• Title/Summary/Keyword: inertia Force

Search Result 415, Processing Time 0.022 seconds

Parameter Sensitivity Analysis of Autonomous Robot Vehicle for Trajectory Error and Friction Force (자율 주행 반송차의 궤적 오차와 마찰력에 대한 매개 변수의 민감도 해석)

  • 김동규;박기환;김수현;곽윤근
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.115-126
    • /
    • 1996
  • In order to obtain the principal design data for developing the Autonomous Robot Vehicle(ARV), Sensitivity analysis on the trajectory error and friction force with respect to the dynamic parameters is performed. In the straight motion, the trajectory error has been proved to be much affected by the mass variance of the ARV while the lateral friction force is much affected by the location of the mass center. In the curved motion, the effect of mass and moment of inertia is considered importantly. In addition, the lateral offset gives more effect than the geometric dimension of the ARV on the trajectory errors and friction force.

  • PDF

A Parametric Study on the Shear-deformation Effect for Beck's Column under Follower Force (비보존력을 받는 Beck 기둥의 전단변형효과에 관한 매개변수적 고찰)

  • Lee Jun-Seok;Kim Nam-Il;Kim Moon-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.985-991
    • /
    • 2006
  • For a shear-deformable beam-column element subjected to non-conservative forces. equations of motion and a finite element formulation are presented applying extended Hamilton's principle. The influence of non-conservative force's direction parameter. internal and external damping forces, and shear deformation and rotary inertia effects on divergence and flutter loads of Beck's columns are intensively investigated based on element stiffness. damping and mass matrixes derived for the non-conservative system.

  • PDF

A Study of Pneumatic Reaction Force of Air Chamber for an OWC Type Wave Energy Device by Forced Heave Experiments (강제동요시 OWC형 파력발전 공기챔버의 공기반력 실험연구)

  • Hong, Seok-Won;Choi, Hark-Sun;Lew, Jae-Moon;Kim, Jin-Ha
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.3
    • /
    • pp.11-17
    • /
    • 2005
  • The effect of frequency and amplitude of the OWC (Oscillating Water Column) motion on the nonlinear reaction forces in an air duct are studied experimentally. Experimental owe model is idealized as a simple circular cylinder with an orifice type air duct located at the middle oj the top rid. Reaction forces due to forced heave oscillation are measured and analyzed. By subtracting the effect of inertia forces and restoring forces, pneumatic damping force and added spring force are deduced. The effects of the frequency and amplitude of the heave motion are discussed. Also, the effects of solidity of the duct on the reaction forces are discussed.

Design and The Characteristic Analysis of the linear pulse motor for X-Y table (X-Y테이블 구동용 리니어 펄스모터의 설계와 특성해석)

  • Park, Chang-Soon;Kwon, Tae-Gun
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.182-184
    • /
    • 2001
  • Linear pulse Motor(LPM) are used a field where smooth linear motion is required, and it's position accuracy higher than that of a lead. According to the advantage such as simplicity of mechanical frame, high reliability, precise open_loop operation, low inertia etc LPM is applied largely where it have made motor of this kind more and more attractive in many application areas such as factory automation and high speed positioning. This paper is researched to analyze for thrust force characteristic of hybrid LPM. Both the thrust and normal force are very sensitive to the airgap and tooth pitches of the force and platen. To find the optimal design parameter on the hybrid LPM for the embroidery machine. For the field analysis, the finite element method(FEM) is employed for calculating the force. The reluctance models will be used the magnetic permeance of airgap under static-conditions. The forces between forcer and platen have been calculated using the virtual work mathod.

  • PDF

A Study of Pneumatic Reaction Force of Air Chamber for an OWC type Wave Energy Device by Forced Heave Experiments (강제동용시 OWC형 파력발전 공기챔버의 공기반력 실험연구)

  • CHOI Hark-Sun;LEW Jae-Moon;HONG Seok-Won;KIM Jin-Ha
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.212-219
    • /
    • 2004
  • The effect of frequency and amplitude of the OWC (Oscillating Water Column) motion on the nonlinear reaction forces in an air duct arc studied experimentally. Experimental OWC model is idealized as a simple circular cylinder with an orifice type air duct located at the middle of the top rid. Reaction forces due to forced heave oscillation are measured and analyzed. By subtracting the effect of inertia forces and restoring forces, pneumatic damping force and added spring force are deduced. The effects of the frequency and amplitude of the heave motion are discussed. Also, the effects of solidity of the duct on the reaction forces are discussed.

  • PDF

Stability Analysis of Beck's Column (Beck 기둥의 안정성 해석)

  • Lee, Byoung-Koo;Lee, Tae-Eun;Kang, Hee-Jong;Kim, Gwon-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.903-906
    • /
    • 2005
  • The purpose of this paper is to investigate free vibrations and critical loads of the uniform Beck's columns with a tip spring, carrying a tip mass. The ordinary differential equation governing free vibrations of such Beck's column subjected to a follower force is derived based on the Bernoulli-Euler beam theory. Both the divergence and flutter critical loads are calculated from the load-frequency curves that are obtained by solving the differential equation numerically. The critical loads are presented in the figures as functions of various non-dimensional system parameters such as the mass moment of inertia and spring parameter.

  • PDF

Five layers in turbulent pipe flow (난류 파이프 유동 내 다섯 개의 영역)

  • Ahn, Junsun;Hwang, Jinyul
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.3
    • /
    • pp.109-115
    • /
    • 2020
  • Five layers in mean flow are proposed by using the direct numerical simulation data of turbulent pipe flow up to Reτ = 3008. Viscous sublayer, buffer layer, mesolayer, log layer and core region are investigated. In the buffer layer, the viscous force is counterbalanced by the turbulent inertia from the streamwise mean momentum balance, and a log law occurs here. The overlap layer is composed of the mesolayer and the log layer. Above the buffer layer, the non-negligible viscous force causes the power law, and this region is the mesolayer, where it is the lower part of the overlap layer. At the upper part of the overlap layer, where the viscous force itself becomes naturally negligible, the log layer will appear due to that the acceleration force of the large-scale motions increases as the Reynolds number increases. In the core region, the velocity-defect form is satisfied with the power-law scaling.

Process Development of Rotor Shaft using a Large Friction Welding (대형마찰용접을 이용한 로타샤프트 제조공정개발)

  • Jeong, H.S.;Cho, J.R.;Lee, N.K.;Park, H.C.;Choi, S.K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.401-404
    • /
    • 2007
  • Inertia welding is a solid-state welding process in which butt welds in materials are made in bar and in ring form at the joint face, and energy required for welding is obtained from a rotating flywheel. The stored energy is converted to frictional heat at the interface under axial load. The quality of the welded joint depends on many parameters, including axial force, initial revolution speed and energy, amount of upset, working time, and residual stresses in the joint. Inertia welding was conducted to make the large rotor shaft for low speed marine diesel engine, alloy steel for shaft of 140mm. Due to different material characteristics, such as, thermal conductivity and flow stress, on the two sides of the weld interface, modeling is crucial in determining the optimal weld geometry and parameters. FE simulation was performed by the commercial code DEFORM-2D. A good agreement between the predicted and actual welded shape is observed. It is expected that modeling will significantly reduce the number of experimental trials needed to determine the weld parameters.

  • PDF

Influence of Elastic Restraint and Tip Mass at Free End on Stability of Leipholz's Column (Leipholz 기둥의 안정성에 미치는 자유단의 탄성구속과 말단질량의 영향)

  • 윤한익;박일주;김영수
    • Journal of KSNVE
    • /
    • v.7 no.1
    • /
    • pp.91-97
    • /
    • 1997
  • An analysis is presented on the stability of an elastic cantilever column having the elastic restraints at its free end, carrying an added tip mass, and subjected to uniformly distributed follower forces. The elastic restraints are formed by both a translational spring and a rotatory spring. For this purpose, the governing equations and boundary conditions are derived by using Hamilton's principle, and the critical flutter loads and frequencies are obtained from the numerical evaluation of the eigenvalue functions of this elastic system. The added tip mass increases as a whole the critical flutter load of the elastic cantilever column, but the presence of its moment of inertia of mass has a destabilizing effect. The existence of the translational and rotatory springs at the free end increases the critical flutter load of the elastic cantilever column. Nevertheless, their effects on the critical flutter load are not uniform because of their coupling. The translational spring restraining the free end of the cantilever column decreases the critical flutter load by coupling with a large value of tip mass, while by coupling with the moment of inertia of tip pass its effect on the critical flutter load is contrary. The rotatory spring restraining the free end of the cantilever column increases the critical flutter load by coupling with the tip mass, but decreases it by coupling with the moment of inertia of the tip mass.

  • PDF

Development of Rotor Shaft Manufacturing Process using a Large Friction Welding (대형마찰용접을 이용한 로타샤프트 제조공정개발)

  • Jeong, H.S.;Lee, N.K.;Park, H.C.;Choi, S.K.;Cho, J.R.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.266-270
    • /
    • 2007
  • Inertia welding is a solid-state welding process in which butt welds in materials are made in bar and in ring form at the joint face, and energy required for welding is obtained from a rotating flywheel. The stored energy is converted to frictional heat at the interface under axial load. The quality of the welded joint depends on many parameters, including axial force, initial revolution speed and energy, amount of upset, working time, and residual stresses in the joint. Inertia welding was conducted to make the large rotor shaft for low speed marine diesel engine, alloy steel for shaft of 140mm. Due to material characteristics, such as, thermal conductivity and high temperature flow stress, on the two sides of the weld interface, modeling is crucial in determining the optimal weld parameters. FE simulation is performed by the commercial code DEFORM-2D. A good agreement between the predicted and actual welded shape is observed. It is expected that modeling will significantly reduce the number of experimental trials needed to determine the weld parameters.