• Title/Summary/Keyword: inert materials

Search Result 227, Processing Time 0.023 seconds

Sintering Characteristics of Au and Ag Nanoparticles Prepared by Inert Gas Condensation (불활성 증발 응축방법으로 제조된 금과 은 나노입자의 소결특성)

  • Lee, Seung-Hyun;Min, Dong-Ryoul;Lee, Kwang-Min
    • Journal of Powder Materials
    • /
    • v.14 no.3 s.62
    • /
    • pp.165-172
    • /
    • 2007
  • The purpose of this study was to analyze the sintering characteristics of gold and silver nanoparticles. In this study, gold and silver nanoparticles were prepared by using Inert Gas Cndensation (IGC). The sintering temperatures for gold and silver nanoparticles were $100{\sim}1000^{\circ}C\;and\'100{\sim}500^{\circ}C$, respectively. The sintering characteristics of gold and silver nanoparticles prepared by IGC were evaluated by X-ray diffraction(XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Gold and silver nanoparticles with the size of $1{\sim}100\;nm\;and\;10{\sim}100\;nm$, respectively, were obtained. The size of sintered gold and silver nanoparticles increased with an increase in the sintering temperature. XRD data showed that silver nanoparticles were similar with polycrystal single-phase.

Aerosol Synthesis and Growth Mechanism of Magnetic Iron Nanoparticles

  • Tolochko, O.V.;Vasilieva, E.S.;Kim, D.;Lee, D.W.;Kim, B.K.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.446-447
    • /
    • 2006
  • Magnetic oxide-coated iron nanoparticles with the mean size ranging from 6 to 75 nm were synthesized by aerosol method using iron carbonyl as a precursor under the flowing inert gas atmosphere. Oxide shells were formed by passivation of asprepared iron particles. The influence of experimental parameters on the nanoparticles' microstructure, phase composition and growth behavior as well as magnetic properties were investigated and discussed in this study.

  • PDF

AN EVALUATION OF DYNAMIC FATIGUE CHARACTERISTICS OF DENTAL CERAMICS FOR ALL-CERAMIC CROWN (All-ceramic Crown 용 도재의 동적 피로특성 평가)

  • Yu, Hyoung-Woo;Bae, Tae-Sung;Song, Kwang-Yeob;Park, Charn-Woon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.4
    • /
    • pp.781-792
    • /
    • 1997
  • This study was peformed to evaluate the dynamic fatigue characteristics of the dental ceramics for all-ceramic crown. A feldspathic porcelain of VMK68. glass ceramic of IPS-Empress, and glass infiltrated alumina ceramic of In-Ceram were used. Disc specimens were prepared to the final dimensions of 12 mm in diameter and 1 mm in thickness. The biaxial flexure test was conducted using a ball-on-three-ball method. 240 specimens were tested in $37^{\circ}C$ water by testing 20 samples at each of four loading rates:0.05, 0.2, 1, and 5mm/min. 60 specimens were tested in a moisture-free environment by testing 20 samples at 5mm/min. The inert strength of VMK68 was 80.25MPa, and the fatigue parameters were n=29.1, ${\sigma}_{fo}=52.90MPa$. The inert strength of IPS-Empress was 104.76MPa, and the fatigue parameters were n=32.46, ${\sigma}_{fo}=67.52MPa$. The inert strength of In-Ceram was 429.33MPa, and the fatigue parameters were n=31.46, ${\sigma}_{fo}=258.36MPa$. 10-year failure stresses of VMK68, IPS-Empress, and In-Ceram were 20.3MPa, 24.8MPa, and 93.6MPa, respectively. Failure strength and fatigue life showed the highest value in In-Ceram, and then, IPS-Empress and VMK68.

  • PDF

Nondestructive Evaluation on Hydrogen Effect of TIG Welded Stainless Steel for Component Design of Pressure Vessel

  • Lee, Jin-Kyung
    • Journal of Power System Engineering
    • /
    • v.21 no.3
    • /
    • pp.102-107
    • /
    • 2017
  • A tungsten inert gas (TIG) welding method was used for the bonding of stainless steel. TIG welding using inert gas (He or Ar gas) is a method to prevent oxidation and nitriding of materials and to combine non-ferrous metals. This method has the advantage of obtaining a smooth weld surface. In this study, the welding characteristics of 304 stainless steel welded by TIG welding method were analyzed by using nondestructive technique. Ultrasonic and Acoustic Emission (AE) was applied to evaluate the micro-damage of TIG welded 304 stainless steel. The velocity and damping coefficient of ultrasonic wave showed a slight difference in HAZ, which is the welding part of stainless steel. The AE parameters of average frequency, rise time and event were analyzed for the dynamic behavior of stainless steel during loading. Optimal AE parameters for evaluating the degree of damage to the specimen have been derived. Fractograph and metal structures of 304 stainless steel using SEM and optical microscope were discussed.

High Current Arc Welding Technology of Aluminum Alloy (알루미늄 합금의 대전류 아크용접 기술)

  • Choi, Young-Bae;Kang, Mun-Jin;Kim, Dong-Cheol;Hwang, In-Sung
    • Journal of Welding and Joining
    • /
    • v.31 no.1
    • /
    • pp.21-25
    • /
    • 2013
  • Aluminum alloy, Al5083-O, is one of candidate materials for the LNG storage tank, because of its excellent weldability, cryogenic characteristics, and corrosion resistance. The good weldability of Al5083-O is very important in LNG storage tank manufacturing. In this study, high current metal inert gas(MIG) welding process was used to get one pass welding of thick plate aluminum alloy. Bead on plate(BOP) welding was performed to evaluate the effect of welding conditions on the height of bead and depth of penetration. The optimum welding conditions were derived to get one pass welding of the thickness of 14.5mm. The mechanical properties of the welded joint were evaluated. The cross-sectional macro test, tensile test, and bending test satisfied the class rule.

Biodeterioration of Cultural Property and Fumigation (문화재의 생물열화 방제-훈증처리를 중심으로)

  • Lee, Ho-Bong
    • 보존과학연구
    • /
    • s.13
    • /
    • pp.69-80
    • /
    • 1992
  • A great numbers of cultural properties destroyed though attack by insect pests and microorganisms. Biodeterioration damage is particularly serious in this country because many cultural propertiese are made of organic materials. Recently, there are various countermeasures of biodeterioration or alternative methods are reported, such as Gamma Radiation, Micro-wave Irridation, Freezing, Inert Atmosphere (Oxygen-less atmosphere), and Environmental Control. However its practical application are limited and some difficulties for treatment of large objects. Fumigation is one of the most useful and effective methods of control biodeterioration because it gives less damage of cultural properties but rapidly eradicate infesting organisms at one action. This paper evaluated selected fumigants and fumigation methods with emphasis on the following paragraph:1) Effectiveness of selected fumigants on insects and microbes involved inbiodeterioration.2) Physical and chemical characters of selected fumigants.3) Less toxic new alternative fumigant and its mixtures.4) Inert atmosphere (Oxygen-less atmosphere)5) Methods of fumigation : Sealed fumigation, Covered fumigation and Vacuum fumigation (Reduced-pressure fumigation)

  • PDF

Comparison of steels via SMAW and MIG welding methods under industrial loads

  • Soy, Ugur
    • Steel and Composite Structures
    • /
    • v.11 no.3
    • /
    • pp.225-232
    • /
    • 2011
  • In this study, the deflection and deformation behaviours of IPN80 steel beam and column were investigated under the different industrial loads. Single-sided welds were applied to IPN80 steel beams using shielded metal arc (SMAW) and metal inert gas welding (MIG) method in the form of T-type. After that, the performance of SMAW and MIG welded joints were identified using beam bending test under 500 and 3000 N loads. SMAW and MIG methods were compared with each other to understand the deflection and deformation behaviours of the welded steel structures. Lower deformation and deflection were obtained in MIG welded steel beams. The results show that, steel beams welded MIG method has higher load capacity than SMAW welded ones. MIG welding method is more reliable than the SMAW method for the combining performance and load capacity.

Analysis of Crop Protection Products using FT-NIR (FT-NIR을 이용한 농약제품분석)

  • Choi, Dal-Soon;Kwon, Oh-Kyung;Kwon, Hye-Young;Hong, Su-Myeong;Kyung, Suk-Hun;Choi, Ju-Hyun
    • The Korean Journal of Pesticide Science
    • /
    • v.10 no.2
    • /
    • pp.84-90
    • /
    • 2006
  • In the field of agriculture, FT-NIR mainly has been used in qualitative management of produces without sample preparation with a data set built from a quantitative value of sample components confirmed by another analytical instrument. On the other hand, inert materials of crop protection products nearly haven't examined instrumental analysis because of analytical problems of high-molecular inert materials and a variety of formulation type. This study, results make it possible to solve an analytical problems of crop protection products using FT-NIR chemometrics technique from spectrum calculator module.

Pore Structure Characterization of Poly(vinylidene chloride)-Derived Nanoporous Carbons

  • Jung, Hwan Jung;Kim, Yong-Jung;Lee, Dae Ho;Han, Jong Hun;Yang, Kap Seung;Yang, Cheol-Min
    • Carbon letters
    • /
    • v.13 no.4
    • /
    • pp.236-242
    • /
    • 2012
  • Poly(vinylidene chloride) (PVDC)-derived nanoporous carbons were prepared by various activation methods: heat-treatment under an inert atmosphere, steam activation, and potassium hydroxide (KOH) activation at 873, 1073, and 1273 K. The pore structures of PVDC-derived nanoporous carbons were characterized by the $N_2$ adsorption technique at 77 K. Heat treatment in an inert atmosphere increased the specific surface area and micropore volume with elevating temperature, while the average micropore width near 0.65 nm was not significantly changed, reflecting the characteristic pore structure of ultramicroporous carbon. Steam activation for PVDC at 873 and 1073 K also yielded ultramicroporosity. On the other hand, the steam activated sample at 1273 K had a wider average micropore width of 1.48 nm, correlating with a supermicropore. The KOH activation increased the micropore volume with elevating temperature, which is accompanied by enlargement of the average micropore width from 0.67 to 1.12 nm. The average pore widths of KOH-activated samples were strongly governed by the activation temperature. We expect that these approaches can be utilized to simply control the porosity of PVDC-derived nanoporous carbons.

Canal Obturation in Open Apex

  • Oh, Won-Mann
    • Proceedings of the KACD Conference
    • /
    • 2001.11a
    • /
    • pp.572-572
    • /
    • 2001
  • The meaning of obturating root canal is to substitute an inert filling materials in the prepared canal space in order to eliminate all avenues of leakage from the oral cavity or periradicular tissue into root canal system. Inadequate obturation induce the infiltration of periapical tissue fluids, which provide materials for growth of microorganisms or localization of bacteria, into dead space of loosely filled canal. Most parts of endodontic failure is attributed to inadequate obturation of root canal system.(omitted)

  • PDF