DOI QR코드

DOI QR Code

Pore Structure Characterization of Poly(vinylidene chloride)-Derived Nanoporous Carbons

  • Jung, Hwan Jung (Institute of Advanced Composite Materials, Korea Institute of Science and Technology) ;
  • Kim, Yong-Jung (Research Institute of Industrial Science and Technology) ;
  • Lee, Dae Ho (Department of Chemistry, Graduate School of Science, Chiba University) ;
  • Han, Jong Hun (Deptment of School of Applied Chemical Engineering, Chonnam National University) ;
  • Yang, Kap Seung (Department of Polymer & Fiber System Engineering, Chonnam National University) ;
  • Yang, Cheol-Min (Institute of Advanced Composite Materials, Korea Institute of Science and Technology)
  • Received : 2012.08.08
  • Accepted : 2012.10.02
  • Published : 2012.10.31

Abstract

Poly(vinylidene chloride) (PVDC)-derived nanoporous carbons were prepared by various activation methods: heat-treatment under an inert atmosphere, steam activation, and potassium hydroxide (KOH) activation at 873, 1073, and 1273 K. The pore structures of PVDC-derived nanoporous carbons were characterized by the $N_2$ adsorption technique at 77 K. Heat treatment in an inert atmosphere increased the specific surface area and micropore volume with elevating temperature, while the average micropore width near 0.65 nm was not significantly changed, reflecting the characteristic pore structure of ultramicroporous carbon. Steam activation for PVDC at 873 and 1073 K also yielded ultramicroporosity. On the other hand, the steam activated sample at 1273 K had a wider average micropore width of 1.48 nm, correlating with a supermicropore. The KOH activation increased the micropore volume with elevating temperature, which is accompanied by enlargement of the average micropore width from 0.67 to 1.12 nm. The average pore widths of KOH-activated samples were strongly governed by the activation temperature. We expect that these approaches can be utilized to simply control the porosity of PVDC-derived nanoporous carbons.

Keywords

Acknowledgement

Supported by : Korea Institute of Science and Technology (KIST)

References

  1. Noguchi D, Hattori Y, Yang CM, Tao Y, Konishi T, Fujikawa T, Ohkubo T, Nobuhara Y, Ohba T, Tanaka H, Kanoh H, Yudasaka M, Iijima S, Sakai H, Abe M, Kim YJ, Kaneko K. Storage function of carbon nanospaces for molecules and ions. ECS Trans, 11, 63 (2007). http://dx.doi.org/10.1149/1.2783303.
  2. Kaneko K, Arai M, Yamamoto M, Ohba T, Miyamoto J, Kim DY, Tao Y, Yang CM, Urita K, Fujimori T, Tanaka H, Ohkubo T, Utsumi S, Hattori Y, Konishi T, Fujikawa T, Kanoh H, Yudasaka M, Hata K, Yumura M, Iijima S, Muramatsu H, Hayashi T, Kim YA, Endo M. Fundamental understanding of nanoporous carbons for energy application potentials. Carbon Lett, 10, 177 (2009). https://doi.org/10.5714/CL.2009.10.3.177
  3. Miyawaki J, Kanda T, Suzuki T, Okui T, Maeda Y, Kaneko K. Macroscopic evidence of enhanced formation of methane nanohydrates in hydrophobic nanospaces. J Phys Chem B, 102, 2187 (1998). http://dx.doi.org/10.1021/jp980034h.
  4. Yang CM, Noguchi H, Murata K, Yudasaka M, Hashimoto A, Iijima S, Kaneko K. Highly ultramicroporous single-walled carbon nanohorn assemblies. Adv Mater, 17, 866 (2005). http://dx.doi. org/10.1002/adma.200400712.
  5. Kim YJ, Yang CM, Park CK, Kaneko K, Kim YA, Noguchi M, Fujino T, Oyama S, Endo M. Edge-enriched, porous carbonbased, high energy density supercapacitors for hybrid electric vehicles. ChemSusChem, 5, 535 (2012). http://dx.doi.org/10.1002/ cssc.201100511.
  6. Yang CM, Kim YJ, Endo M, Kanoh H, Yudasaka M, Iijima S, Kaneko K. Nanowindow-regulated specific capacitance of supercapacitor electrodes of single-wall carbon nanohorns. J Am Chem Soc, 129, 20 (2007). http://dx.doi.org/10.1021/ja065501k.
  7. Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science, 313, 1760 (2006). http://dx.doi.org/10.1126/ science.1132195.
  8. Kim YJ, Horie Y, Ozaki S, Matsuzawa Y, Suezaki H, Kim C, Miyashita N, Endo M. Correlation between the pore and solvated ion size on capacitance uptake of PVDC-based carbons. Carbon, 42, 1491 (2004). http://dx.doi.org/10.1016/j.carbon.2004.01.049.
  9. Yang CM, Kaneko K. Adsorption properties of nitrogen-alloyed activated carbon fiber. Carbon, 39, 1075 (2001). http://dx.doi. org/10.1016/S0008-6223(00)00229-3.
  10. Ohkubo T, Iiyama T, Nishikawa K, Suzuki T, Kaneko K. Porewidth dependent ordering of C2H5OH molecules confined in graphitic slit nanospaces. J Phys Chem B, 103, 1859 (1999). http:// dx.doi.org/10.1021/jp984261v.
  11. Wang ZM, Kaneko K. Effect of pore width on micropore filling mechanism of $SO_{2}$ in carbon micropores. J Phys Chem B, 102, 2863 (1998). http://dx.doi.org/10.1021/jp973270l.
  12. Endo M, Kim YJ, Takeda T, Maeda T, Hayashi T, Koshiba K, Hara H, Dresselhaus MS. Poly(vinylidene chloride)-based carbon as an electrode materials for high power capacitors with an aqueous electrolyte. J Electrochem Soc, 148, 10, A1135 (2001). http://dx.doi. org/10.1149/1.1401084.
  13. Kim YJ, Ishii K, Inoue T, Endo M, Dresselhaus MS, Nomura T, Miyashita N. Structure and edlc applications of PVDC based carbons as a function of carbonization time. Mol Cryst Liq Cryst, 386, 1, 67 (2002). http://dx.doi.org/10.1080/713738834.
  14. Endo M, Kim YJ, Ishii K, Inoue T, Takeda T, Maeda T, Nomura T, Miyashita N, Dressselhaus MS. Structure and application of various saran-based carbons to aqueous electric double layer capacitors. J Electrochem Soc, 149, 11, A1473 (2002). http://dx.doi. org/10.1149/1.1512666.
  15. Endo M, Kim YJ, Ishii K, Inoue T, Nomura T, Miyashita N, Dresselhaus MS. Heat-treatment retention time dependence of polyvinylidenechloride- based carbons on their application to electric double-layer capacitors. J Mater Res, 18, 693 (2003). http://dx.doi. org/doi:10.1557/JMR.2003.0093.
  16. Endo M, Kim YJ, Osawa K, Ishii K, Inoue T, Nomura T, Miyashita N, Dresselhaus MS. High capacitance EDLC using a carbon material obtained by carbonization of PVDC: the effect of the crystallite size of the pristine PVDC. Electrochem Solid-State Lett, 6, A23 (2003). http://dx.doi.org/10.1149/1.1530011.
  17. Eliad L, Poliak E, Levy N, Salitra G, Soffer A, Aurbach D. Assessing optimal pore-to-ion size relations in the design of porous poly(vinylidene chloride)carbons for EDL capacitors. App Phys A 82, 607 (2006). http://dx.doi.org/10.1007/s00339-005-3440-9.
  18. Xu B, Wu F, Chen S, Cao G, Zhou Z. A simple method for preparing porous carbon by PVDC pyrolysis. Colloids Surf Physicochem Eng Aspects, 316, 85 (2008). http://dx.doi.org/10.1016/j.colsurfa. 2007.08.042.
  19. Xu Bin, Wu Feng, Chen Shi, Zhou Zhiming, Cao Gaoping, Yang Yusheng. High-capacitance carbon electrode prepared by PVDC carbonization for aqueous EDLCs. Electrochemical Acta, 54, 2185 (2009). http://dx.doi.org/10.1016/j.electacta.2008.10.032.
  20. Zhang K, Way JD. Optimizing the synthesis of composite polyvinylidene dichloride-based selective surface flow carbon membranes for gas separation. J Membr Sci, 369, 243 (2011). http:// dx.doi.org/10.1016/j.memsci.2010.11.066.
  21. Kim YJ, Masutzawa Y, Ozaki S, Endo M, Dresselhaus MS. PVDCbased carbon materials by chemical activation and its application to nonaqueous EDLC. J Electrochem Soc, 151, 6, E199 (2004). http://dx.doi.org/10.1149/1.1715095.
  22. Xu B, Wu F, Mu D, Dai L, Cao G, Zhang H, Chen S, Yang Y. Activated carbon prepared from PVDC by NaOH activation as electrode materials for high performance EDLCs with non-aqueous electrolyte. Int J Hydrogen Energy, 35, 632 (2010). http://dx.doi. org/10.1016/j.ijhydene.2009.10.110.
  23. Setoyama N, Suzuki T, Kaneko K. Simulation study on the relationship between a high resolution $\alpha$s-plot and the pore size distribution for activated carbon. Carbon, 36, 1459 (1998). http://dx.doi. org/10.1016/s0008-6223(98)00138-9.
  24. Yang CM, El-Merraoui M, Seki H, Kaneko K. Characterization of nitrogen-alloyed activated carbon fiber. Langmuir, 17, 675 (2001). http://dx.doi.org/10.1021/la000307b.
  25. Roberge PR, Beaudoin R, Berthiaume JM. Fabrication and characterization of an activated carbon for electrochemical applications. Carbon, 26, 173 (1988). http://dx.doi.org/10.1016/0008- 6223(88)90034-6.

Cited by

  1. Preparation of well-controlled porous carbon nanofiber materials by varying the compatibility of polymer blends vol.63, pp.8, 2013, https://doi.org/10.1002/pi.4645