DOI QR코드

DOI QR Code

Sintering Characteristics of Au and Ag Nanoparticles Prepared by Inert Gas Condensation

불활성 증발 응축방법으로 제조된 금과 은 나노입자의 소결특성

  • Lee, Seung-Hyun (Department of Materials Science & Engineering, Chonnam National University, Research Institute for Functional Surface Engineering) ;
  • Min, Dong-Ryoul (Department of Materials Science & Engineering, Chonnam National University, Research Institute for Functional Surface Engineering) ;
  • Lee, Kwang-Min (Department of Materials Science & Engineering, Chonnam National University, Research Institute for Functional Surface Engineering)
  • 이승현 (전남대학교 공과대학 신소재공학부 및 기능성 표면공학연구소) ;
  • 민동열 (전남대학교 공과대학 신소재공학부 및 기능성 표면공학연구소) ;
  • 이광민 (전남대학교 공과대학 신소재공학부 및 기능성 표면공학연구소)
  • Published : 2007.06.28

Abstract

The purpose of this study was to analyze the sintering characteristics of gold and silver nanoparticles. In this study, gold and silver nanoparticles were prepared by using Inert Gas Cndensation (IGC). The sintering temperatures for gold and silver nanoparticles were $100{\sim}1000^{\circ}C\;and\'100{\sim}500^{\circ}C$, respectively. The sintering characteristics of gold and silver nanoparticles prepared by IGC were evaluated by X-ray diffraction(XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Gold and silver nanoparticles with the size of $1{\sim}100\;nm\;and\;10{\sim}100\;nm$, respectively, were obtained. The size of sintered gold and silver nanoparticles increased with an increase in the sintering temperature. XRD data showed that silver nanoparticles were similar with polycrystal single-phase.

Keywords

References

  1. M. C. Barnes, I. D. Jeon, D. Y. kim and N. M. Hwang: J. Crys. Gro., 242 (2002) 455 https://doi.org/10.1016/S0022-0248(02)01417-3
  2. A. C. Xenoulis, G. doukellis and T. Tsakalakos: Nanostruc. Mat., 10 (1998) 1347 https://doi.org/10.1016/S0965-9773(99)00006-9
  3. Hyun-SH, Kang-BS: J. The Ame. Cer. Soci. 12 (1994) 3093
  4. Miyaka-S, Kinomura-N, Suzuki-T and Suwa-T: J. Mater. Sci., 12 (1999) 2921
  5. M. I. Baraton and L: Merhari, Mater. Trans, 42 (2001) 1616 https://doi.org/10.2320/matertrans.42.1616
  6. Yatsuya, Kasukabc: Uycda, Japanese J. Appl. Phys., 12 (1973) 1675 https://doi.org/10.1143/JJAP.12.1675
  7. K. Sattler, J. Muhlbach and E. Rccknagel: Phys. Rev. Lett., 45 (1980) 821 https://doi.org/10.1103/PhysRevLett.45.821
  8. W. Seigel: Annu. Rev. Mater. Sci., 21 (1991) 559 https://doi.org/10.1146/annurev.ms.21.080191.003015
  9. H. Konard, T. Haubold, R. Birringer and H. Gleiter: Nanostruct. Mat., 7 (1996) 605 https://doi.org/10.1016/0965-9773(96)00038-4
  10. S.T. Park: Koran J. Mat. Res., 13 (2003) 550 https://doi.org/10.3740/MRSK.2003.13.8.550
  11. Y. Xing and D.E. Rosner: J. Nanopart. Res., 1 (1999) 277 https://doi.org/10.1023/A:1010021004233
  12. K. E. J. Lehtinen and M. R. Zachariah: J. Aer. Sci., 33 (2002) 357 https://doi.org/10.1016/S0021-8502(01)00177-X
  13. M. Shimada, T. Seto and K. Okuyama: J. Chemi. Eng. Jap., 27 (1994) 795 https://doi.org/10.1252/jcej.27.795
  14. M. H. Magnusson, K. Deppert, J. O. Malm, J. O. Bovin and L. Samuelson: J. Nanopart. Res., 1 (1999) 243 https://doi.org/10.1023/A:1010012802415
  15. K. Nakaso, M. Shimada, K. Okuyama and K. Deppert: J. Aer. Sci., 33 (2002) 1061 https://doi.org/10.1016/S0021-8502(02)00058-7
  16. K. S. Moon, H. Dong, R. Maric, S. Pothukuchi, A. Hunt, Y. Li and C.P. Wong: J. Elect. Mat., 34 (2005) 168 https://doi.org/10.1007/s11664-005-0229-8
  17. R. M. German: Sintering Theory and Practice, 1, Dae-Woong (1996) 146