• Title/Summary/Keyword: industrial valves

Search Result 123, Processing Time 0.028 seconds

Pulsatile Blood Flows Through a Bileaflet Mechanical Heart Valve with Different Approach Methods of Numerical Analysis : Pulsatile Flows with Fixed Leaflets and Interacted with Moving Leaflets

  • Park, Choeng-Ryul;Kim, Chang-Nyung;Kwon, Young-Joo;Lee, Jae-Won
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.7
    • /
    • pp.1073-1082
    • /
    • 2003
  • Many researchers have investigated the blood flow characteristics through bileaflet mechanical heart valves using computational fluid dynamics (CFD) models. Their numerical approach methods can be classified into three types; steady flow analysis, pulsatile flow analysis with fixed leaflets, and pulsatile flow analysis with moving leaflets. The first and second methods have been generally employed for two-dimensional and three-dimensional calculations. The pulsatile flow analysis interacted with moving leaflets has been recently introduced and tried only in two-dimensional analysis because this approach method has difficulty in considering simultaneously two physics of blood flow and leaflet behavior interacted with blood flow. In this publication, numerical calculation for pulsatile flow with moving leaflets using a fluid-structure interaction method has been performed in a three-dimensional geometry. Also, pulsatile flow with fixed leaflets has been analyzed for comparison with the case with moving leaflets. The calculated results using the fluid-structure interaction model have shown good agreements with results visualized by previous experiments. In peak systole. calculations with the two approach methods have predicted similar flow fields. However, the model with fixed leaflets has not been able to predict the flow fields during opening and closing phases. Therefore, the model with moving leaflets is rigorously required for advanced analysis of flow fields.

Flow Characteristics in the Downstream Region of a Butterfly Valve with Various Disk Opening Angle (디스크 회전각에 따른 버터플라이 밸브 하류에서의 유동특성)

  • Cho, Dae-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.12 no.4 s.27
    • /
    • pp.267-272
    • /
    • 2006
  • Butterfly valves have been used for shut-off and throttling-control application in many industrial fields. Recently, they are frequently used for cooling water, oil system and ballast piping system of many larger vessels. They are especially suited for flow throttling control of heat exchangers in engine room. Measurement by the PIV(Particle Image Velocimetry) was conducted to investigate the flow characteristics of butterfly valve inserted within circular pipe. Flow behaviors such as instantaneous and time-mean velocity vectors are investigated. Furthermore, to reveal systematic performance of the butterfly valve, wall pressure was measured at 6 points along the pipe by digital manometer. As the valve position moves to the closed side, flow separation increases and persists its tendency downstream until smoothly uniform flow developed. The pressure loss is found to be about zero for the disk open angles less than 45 degrees, but is substantially increased for those larger than 60 degrees.

  • PDF

Development of Motion Control Techniques and Sea Trials of The Test Ship $\ulcorner$NARAE$\lrcorner$ (시험선 $\ulcorner$나래$\lrcorner$의 자세 제어 기술 개발 및 실해역 시험)

  • J.W. Kim;Y.G. Kim;G.J. Lee;C.Y. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.3
    • /
    • pp.26-37
    • /
    • 1998
  • In this study, the motion control techniques allied to the test ship NARAE are summarized and the results of sea trials are resented. NARAE adopted a hybrid hull form with lower hull and submerged foils. This type of ship has a substantial instability in heave, pitch and roll modes at the foil-borne stage due to little restoring force, so an active control is indispensable to keep the stability. 4-hydraulic actuators with servo valves were installed to drive foils, and several sensors were used to measure the motion of the ship. PID controller was adopted as a motion controller, and for the real-time control, Pentium-class industrial PC was used. Sea trials including take-off, landing, and banked turn maneuvering were carried out for a period of over 3 months and quite satisfactory results were obtained.

  • PDF

Friction and Wear Characteristics of Magneto-rheological Fluid Depend on Surface Coated by DLC and PTFE (DLC와 PTFE표면코팅에 따른 자기유변유체의 마찰 마모 특성)

  • Zhang, Peng;Lee, Kwang-Hee;Lee, Chul-Hee;Choi, JongMyong
    • Tribology and Lubricants
    • /
    • v.31 no.2
    • /
    • pp.62-68
    • /
    • 2015
  • A magnetorheological (MR) fluid is a smart material whose rheological behavior can be controlled by varying the parameters of the applied magnetic field. Because the damping force and shear force of an MR fluid can be controlled using a magnetic field, it is widely employed in many industrial applications, such as in vehicle vibration control, powertrains, high-precision grinding processes, valves, and seals. However, the characteristics of friction caused by iron particles inside the MR fluid need to be understood and improved so that it can be used in practical applications. Surface process technologies such as polytetrafluoroethylene (PTFE) coatings and diamond-like carbon (DLC) coatings are widely used to improve the surface friction properties. This study examines the friction characteristics of an MR fluid with different surface process technologies such as PTFE coatings and DLC coatings, by using a reciprocating friction tester. The coefficients of friction are in the following descending order: MR fluid without any coating, MR fluid with a DLC coating, and MR fluid with a PTFE coating. Scanning electron microscopy is used to observe the worn surfaces before and after the experiment. In addition, energy dispersive X-ray spectroscopy is used to analyze the chemical composition of the worn surface. Through a comparison of the results, the friction characteristics of the MR fluid based on the different coating technologies are analyzed.

Study on improvement of efficiency of gas filter at the natural gas valve station (천연가스 공급기지내 가스필터 성능개선에 관한 연구)

  • Cho Y.B.;Jeon K.S.;Her J.Y.;You K.H.
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.1
    • /
    • pp.47-52
    • /
    • 1998
  • To eliminate foreign substance like metal rust and sand in natural gas pipeline, 250um strainer filter is used present in Korea Gas Corporation. But particles smaller than 250um passing the filter have bad effects to the valves and the measuring equipments. In order to eliminate small paticle in the pipeline, it is necessary to cut down the pore size of filter When we cut down the pore size of filter, the pressure difference between the front of filter and that of the rear part is increasing and disturb normal condition of gas supply. So it is very important to control the condition between the pore size of filter and the pressure difference. In this study, using head loss coefficient K, the estimation method of efficiency of gas filter according to the pore size and the pressure difference is presented.

  • PDF

Comparison of Loss Coefficient using 1-inch Ball and Glove Valve Opening Ratio (1인치 볼 밸브 및 글로브 밸브에 대한 개도율에 따른 손실계수(k) 비교에 관한 연구)

  • Kang, Chang-Won;Yi, Chung-Seob;Lee, Chi-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.9
    • /
    • pp.63-69
    • /
    • 2021
  • This study aims to determine the flow characteristics of a one-inch small ball valve and glove valve used in industrial plants. The flow was changed through an experimental equipment, and the internal flow characteristics of the valves were compared. Considering the pressure drop, the decrease in the slope of the ball valve based on the degree of the valve opening was relatively greater than that of the glove valve; further, the slope of the glove valve was gentle while the pressure drop was high. The flow velocity of the ball valve remains consistent after the valve was opened by 70%, whereas the flow velocity of the glove valve constantly increased. The valve loss factor of the ball valve was relatively low compared with that of the glove valve. When the valve was opened by 20%, which is the beginning stage of the valve opening, the valve loss factor of the ball valve was high and gradually became low. This is a structural problem of the ball valve, and the loss factor is significant because the flow path installed at the ball valve has a considerably small area. However, the overall loss factor of glove valve is high because it has a complicated structure of flow path.

A Consequence Analysis of the Mitigation Impact on Emergency Shut-off Valves for Accidents of Underground Pipelines (사고영향평가를 이용한 지하 매설 배관 사고 시 긴급차단밸브에 의한 피해 범위 감소에 관한 연구)

  • Park, Sang Bae;Lee, Chang Jun
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.2
    • /
    • pp.28-34
    • /
    • 2019
  • A large number of underground pipelines in the Ulsan National Industrial Complex has been constructed to improve the productivity of chemical products and tackle transportation problems. Now, the total of 1,293km of underground pipelines around 62 companies has been installed and operated. Many of underground pipelines have been installed outside of factories. For a past three years, five gas leakage accidents have occurred and the emergency response took up to 8 hours or more. Due to these delay in accidents, second serious accidents might occur and lead to occur damages to adjacent residents. In this study, it is assumed that emergency valve systems are installed under a ground and the efficacy of these is verified. Consequence analysis program was employed to evaluate the mitigation impact of emergency valve systems. The results show that these valve systems are economical and their performances for a mitigation are excellent. The results indicate that the installation of emergency valve systems for underground pipelines should be urgently legislated and performed.

A Study on the Phase Bandwidth Frequency of a Directional Control Valve Based on the Hydraulic Line Pressure (배관 압력을 이용한 방향제어밸브 위상각 대역폭 주파수 측정에 관한 연구)

  • Kim, Sungdong;Lee, Jung-eun;Shin, Daeyoung
    • Journal of Drive and Control
    • /
    • v.15 no.4
    • /
    • pp.1-10
    • /
    • 2018
  • Spool displacement of a direction control valve is the standard signal to measure the bandwidth frequency of the direction control valve. When the spool displacement signal is not available, it is suggested in this study to use the metering hydraulic line as an alternative way to measure - 90 degree phase bandwidth frequency of the hydraulic direction control valve. Dynamics of the hydraulic line is composed of inertia, capacitance, and friction effects. The effect of oil inertia is dominant in common hydraulic line dynamics and the line dynamics is close to a derivative action in a range of high frequency; such as a range of bandwidth frequency of common directional control valves. Phase difference between spool displacement and line load pressure is nearly constant as a valve close to 90 degree. If phase difference is compensated from the phase between valve input and pressure, compensated phase may be almost same as the phase of spool displacement that is a standard signal to measure phase bandwidth frequency of the directional control valve. A series of experiments were conducted to examine the possibility of using line pressure in to measure phase bandwidth frequency of a directional control valve. Phase bandwidth frequency could be measured with relatively high precision based on metering hydraulic line technique and it reveals consistent results even when valve input, oil temperature, and supply pressure change.

Design and Analysis of Cell Controller Operation for Heat Process (열공정에 대한 셀 콘트롤러 운영의 설계와 해석)

  • So, Ye In;Jeon, Sang June;Kim, Jeong Ho
    • Journal of Platform Technology
    • /
    • v.8 no.2
    • /
    • pp.22-31
    • /
    • 2020
  • The construction and operation of industrial automation has been actively taking place from manufacturing plan to production for improving operational efficiency of production line and flexibility of equipment. ISO/TC184 is standardizing on operating methods that can share information of programmable device controllers such as PLC and IoT that are geographically distributed in the production line. In this study, the design of the cell controller consists of PLC group and IoT group that perform signals such as temperature sensors, gas sensors, and pressure sensors for thermal processes and corresponding motors or valves. The operation and analysis of the cell controller were performed using SDN(Software Defined Network) and the three types of process services performed in thermal processes are real-time transmission service, loss-sensitive large-capacity transmission service, and normal transmission service. The simulation result showed that the average loss rate improved by about 17% when the traffic increased before and after the application of the SDN route technique, and the delay in the real-time service was as low as 1 ms.

  • PDF

Study of Pressure Safety Valves and an Absorption System for a Repurposed Ammonia Tank (용도 변경된 암모니아 탱크 안전밸브 및 흡수시설에 관한 연구)

  • Bae, Jong Hoon;Lee, Chang Jun
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.512-518
    • /
    • 2022
  • In this study, safety devices for ammonia tanks of a company in Ulsan petrochemical industrial complex were studied. The type of a tank is cylindrical and this tank was originally designed to store propylene in 1972. Due to the changes of the production schedule according to market environments, the usage of this tank has been changed to store ammonia. Despite of the changes of materials, there is no scientific information or reviews for guaranteeing the safety. Therefore, in this study, the current status of this tank is investigated to confirm that the operational conditions are complying with safety conditions. Moreover, the safety devices such as an ammonia absorbing system and water curtains are analyzed how they mitigate the impact of an accident. In addition, consequence analysis is performed to provide a proper emergency response plan. Throughout these analysis, it is confirmed that installed safety devices effectively mitigate the impact of accidents, and the necessary time for an emergency response plan is suggested when ammonia release.