• Title/Summary/Keyword: industrial robot

Search Result 1,125, Processing Time 0.024 seconds

Roll Replacing Robot Systems for Wire-rod Press Roll (선재 압연 롤 교체 로봇 시스템)

  • Jin, Mao-Lin;You, Ki-Sung;Ryu, Hwang-Ryol;Choi, Chin-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.7
    • /
    • pp.647-650
    • /
    • 2011
  • This paper presents the development of roll replacement robot system for wire-rod press rolls. The roll replacement robot system consist of a palletized railway truck, a 6-DOF industrial robot manipulator, a roll changing tool and a hydraulic power system. Results of simulation and pilot experiment show the roll changing task can be successfully automated using proposed robot system.

Development of Gait Assisting Rehabilitation Robot for SCI (Spinal Cord Injury) Patient (척수손상환자를 위한 보행보조 재활 로봇 개발)

  • Jang, In-Hun;Lee, Duk-Yeon;Jung, Jun-Young;Lee, Dong-Wook;Lee, Ho-Gil;Park, Hyun-Sub
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.9
    • /
    • pp.860-865
    • /
    • 2010
  • This paper deals with gait assisting rehabilitation robot which helps SCI patient walk again. We propose new concept of orthotic for robot considering motions of Hip and Knee Joints, and how to fit the robot to a user in terms of weight balance and comfortable standing. Then we describe our first engineering sample being designed based on the passive orthotic and show how to make the robot work for SCI patient in basic operation.

Obstacle Avoidance for a Mobile Robot Using Optical Flow (광류 정보를 이용한 이동 로봇의 장애물 회피 항법)

  • Lee, Han-Sik;Baek, Jun-Geol;Jang, Dong-Sik
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.28 no.1
    • /
    • pp.25-35
    • /
    • 2002
  • This paper presents a heuristic algorithm that a mobile robot avoids obstacles using optical flow. Using optical flow, the mobile robot can easily avoid static obstacles without a prior position information as well as moving obstacles with unknown trajectories. The mobile robot in this paper is able to recognize the locations or routes of obstacles, which can be detected by obtaining 2-dimensional optical flow information from a CCD camera. It predicts the possibilities of crash with obstacles based on the comparison between planned routes and the obstacle routes. Then it modifies its driving route if necessary. Driving acceleration and angular velocity of mobile robot are applied as controlling variables of avoidance. The corresponding simulation test is performed to verify the effectiveness of these factors. The results of simulation show that the mobile robot can reach the goal with avoiding obstacles which have variable routes and speed.

Development of Robot Performance Platform Interoperating with an Industrial Robot Arm and a Humanoid Robot Actor (산업용 로봇 Arm과 휴머노이드 로봇 액터를 연동한 로봇 공연 플랫폼 개발)

  • Cho, Jayang;Kim, Jinyoung;Lee, Sulhee;Lee, Sang-won;Kim, Hyungtae
    • Journal of Broadcast Engineering
    • /
    • v.25 no.4
    • /
    • pp.487-496
    • /
    • 2020
  • For the purpose of next generation technology for robot perfomances, a RAoRA (Robot Actor on Robot Arm) structure was proposed using a robot arm joined with a humanoid robot actor. Mechanical analysis, machine design and fabrication were performed for motions combined with the robot arm and the humanoid robot actor. Kinematical analysis for 3D model, spline interpolation of positions, motion control algorithm and control devices were developed for movements of the robot actor. Preliminary visualization, simulation tools and integrated operation of consoles were constructed for the non-professionals to produce intuitive and safe contents. Air walk was applied to test the developed platform. The air walk is a natural walk close to a floor or slow ascension to the air. The RAoRA also executed a performance with 5 minute-running time. Finally, the proposed platform of robot performance presented intensive and live motions which was impossible in conventional robot performances.

Design of Controller and Gripper for Wireless Communication of Gripper Contact Signal (그리퍼 접촉신호의 무선통신을 위한 제어장치 및 그리퍼 설계)

  • Kim, Hyeon Min;Kim, Chong Jin;Kim, Gab Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.9
    • /
    • pp.821-829
    • /
    • 2014
  • This paper describes the development of a wireless communication controller of gripper contact signal for industrial robot. The wireless communication gripper controller is composed of a robot wireless communication controller and a gripper wireless transmitting/receiving controller. The robot wireless communication controller transmits the data of gripper sensors, and the gripper wireless communication controller receives the data. And the controller sends the data to the robot controller of industrial robot. As a result of the characteristics test of the wireless communication gripper controller, it is thought that the robot wireless communication controller A transmits and receives three gripper wireless transmitting/receiving controller A1, A2, A3 another. Thus, the developed wireless communication gripper controller can be used for transmitting/ receiving the data of gripper sensors for industrial robot.

Development of a Hovering Robot System for Calamity Observation

  • Kang, M.S.;Park, S.;Lee, H.G.;Won, D.H.;Kim, T.J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.580-585
    • /
    • 2005
  • A QRT(Quad-Rotor Type) hovering robot system is developed for quick detection and observation of the circumstances under calamity environment such as indoor fire spots. The UAV(Unmanned Aerial Vehicle) is equipped with four propellers driven by each electric motor, an embedded controller using a DSP, INS(Inertial Navigation System) using 3-axis rate gyros, a CCD camera with wireless communication transmitter for observation, and an ultrasonic range sensor for height control. The developed hovering robot shows stable flying performances under the adoption of RIC(Robust Internal-loop Compensator) based disturbance compensation and the vision based localization method. The UAV can also avoid obstacles using eight IR and four ultrasonic range sensors. The VTOL(Vertical Take-Off and Landing) flying object flies into indoor fire spots and sends the images captured by the CCD camera to the operator. This kind of small-sized UAV can be widely used in various calamity observation fields without danger of human beings under harmful environment.

  • PDF

A Design of Dynamic Simulator of Articulated Robot (다관절 로봇의 동적 시뮬레이터 설계)

  • Park, In-Man;Jung, Seong-Won
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.2
    • /
    • pp.75-81
    • /
    • 2015
  • This study proposes an articulated robot control system using an on/off-line robot graphic simulator with multiple networks. The proposed robot control system consists of a robot simulator using OpenGL, a robot controller based on a DSP(TMS320) motion board, and the server/client communication by multiple networks. Each client can control the real robot through a server and can compare the real robot motion with the virtual robot motion in the simulation. Also, all clients can check and analyze the robot motion simultaneously through the motion image and data of the real robot. In order to show the validity of the presented system, we present an experimental result for a 6-axis vertical articulated robot. The proposed robot control system is useful, especially, in the industrial fields using remote robot control as well as industrial production automation with many clients.

Teleoperation Control of ROS-based Industrial Robot Using EMG Signals (근전도센서를 이용한 ROS기반의 산업용 로봇 원격제어)

  • Jeon, Se-Yun;Park, Bum Yong
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.2
    • /
    • pp.87-94
    • /
    • 2020
  • This paper introduces a method to control an industrial robot arm to imitate the movement of the human arm and hand using electromyography (EMG) signals. The proposed method is implemented on the UR3 robot that is a popular industrial robot and a MYO armband that measure the EMG signals generated by human muscles. The communications for the UR3 robot and the MYO armband are integrated in the robot operating system (ROS) that is a middle-ware to develop robot systems easily. The movement of the human arm and hand is detected by the MYO armband, which is utilized to recognize and to estimate the speed of the movement of the operator's arm and the motion of the operator's hand. The proposed system can be easily used when human's detailed movement is required in the environment where human can't work. An experiments have been conducted to verify the performance of the proposed method using the teleoperation of the UR3 robot.

Site Survey on the Safe use of the Industrial Robots (산업용 로봇의 사용실태에 관한 조사 연구)

  • Rhee, Hong-Suk;Shin, Woon-Chul;Kwon, Hyuck-Myun;Lee, Jun-Suk
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.5
    • /
    • pp.22-29
    • /
    • 2012
  • Robot related injuries in industrial accidents statistics during 2008~2010 have accounted for a total of 109 cases equivalent to 30~40 cases for each of those years. The number of injured compared to the dissemination of industrial robots(51,302 units/2004) can be regarded as quite low. However, the fatal injuries sustained by 7 (6.4%) out of 109 cases paints the stark reality of robot-related accident fatalities. It is a sad probability that as the automation process expands its use of industrial robots which have increased significantly in demand, the incidence of workplace accidents will also increase. Therefore, the incidence of accidents throughout the period of 2008~2010 has been analysed to prevent the injuries due to the increased use of industrial robots. In the analysis, the injuries occurred during the industrial robot operation accounted for 45.9% of the entire accidents. Thus, we examined the present status of the industrial robot operation to analyze the root cause of accidents occurred in our studied time period. We looked at a total of 469 workplaces. 456 workplaces responded in the year 2009 and survey studies were implemented at 13 of the 29 workplaces where work injuries were sustained in the year 2010. Even where protective measures and interlock devices were in place, our studies indicated that workers could access the robot area to perform the tasks in 188 sites(40.1%). Also, the 143 sites(30.5%) had control measures and equipment located in the safety fence. In addition, the robots found at 164 sites(35.0%) could be restarted without additional restarting operation. These three causes accounted for most of the workplace injuries during the industrial robot operations. Futhermore, we confirmed the fact that the protective measures of the current safety regulations were not strictly enforced. Based upon our studies and the investigation of the present status of the industrial robot operation, higher standards in training and supervision of workers in the robot operation must quickly be met in order to prevent these industrial injuries.

Trajectory Planning of Industrial Robot using Spline Method in Task Space (직교좌표공간에서의 스플라인을 이용한 산업용 로봇의 궤적 생성 방법)

  • Chung, Seong Youb;Hwang, Myun Joong
    • Journal of Institute of Convergence Technology
    • /
    • v.6 no.2
    • /
    • pp.9-13
    • /
    • 2016
  • Robot usually requires spline motion to move through multiple knots. In this paper, catmull-rom spline method is applied to the trajectory planning of industrial robot in task space. Centripetal catmull-rom is selected to avoid self-intersection and slow motion which can be occurred in uniform and chordal spline. The method to set two control points are proposed to satisfy velocity conditions of initial and final knots. To optimize robot motion, time scaling method is presented to minimize margin between real robot value and maximum value in velocity and acceleration. The simulation results show that the proposed methods are applied to trajectory planning and robot can follow the planned trajectory while robot motion does not exceed maximum value of velocity and acceleration.