DOI QR코드

DOI QR Code

Development of Robot Performance Platform Interoperating with an Industrial Robot Arm and a Humanoid Robot Actor

산업용 로봇 Arm과 휴머노이드 로봇 액터를 연동한 로봇 공연 플랫폼 개발

  • Cho, Jayang (Korea Institute of Industrial Technology, Human Convergence Technology R&D Department) ;
  • Kim, Jinyoung (Korea Institute of Industrial Technology, Human Convergence Technology R&D Department) ;
  • Lee, Sulhee (Korea Institute of Industrial Technology, Human Convergence Technology R&D Department) ;
  • Lee, Sang-won (Korea Institute of Industrial Technology, Human Convergence Technology R&D Department) ;
  • Kim, Hyungtae (Korea Institute of Industrial Technology, Human Convergence Technology R&D Department)
  • 조자양 (한국생산기술연구원 휴먼융합연구부문) ;
  • 김진영 (한국생산기술연구원 휴먼융합연구부문) ;
  • 이설희 (한국생산기술연구원 휴먼융합연구부문) ;
  • 이상원 (한국생산기술연구원 휴먼융합연구부문) ;
  • 김형태 (한국생산기술연구원 휴먼융합연구부문)
  • Received : 2019.05.19
  • Accepted : 2020.06.17
  • Published : 2020.07.30

Abstract

For the purpose of next generation technology for robot perfomances, a RAoRA (Robot Actor on Robot Arm) structure was proposed using a robot arm joined with a humanoid robot actor. Mechanical analysis, machine design and fabrication were performed for motions combined with the robot arm and the humanoid robot actor. Kinematical analysis for 3D model, spline interpolation of positions, motion control algorithm and control devices were developed for movements of the robot actor. Preliminary visualization, simulation tools and integrated operation of consoles were constructed for the non-professionals to produce intuitive and safe contents. Air walk was applied to test the developed platform. The air walk is a natural walk close to a floor or slow ascension to the air. The RAoRA also executed a performance with 5 minute-running time. Finally, the proposed platform of robot performance presented intensive and live motions which was impossible in conventional robot performances.

차세대 로봇 공연 기술을 개발하기 위하여 산업용 로봇 arm에 휴머노이드형의 로봇 액터를 부착한 RAoRA (Robot Actor on Robot Arm) 구조를 제안하고, 시스템 연동 제어를 위한 소프트웨어를 탑재하여 로봇 공연 플랫폼을 구축하였다. 로봇 액터와 산업용 로봇 arm의 연동 모션을 위하여 역학적 분석을 수행하고 기계적 메커니즘을 설계 및 제작하였다. 로봇 액터의 동작을 위하여 3D 모델의 기구학적인 분석, spline 위치 보간, 모션 제어 알고리즘 및 제어 장치를 개발하였다. 비전문가도 직관적이고 안전한 공연 콘텐츠를 제작할 수 있도록 사전 시각화, 시뮬레이션 도구 및 콘솔 통합 운영 도구를 개발하였다. 테스트를 위하여 지면에 거의 밀착하여 자연스럽게 걷거나 서서히 공중으로 올라가는 air walk 시연하였고 러닝 타임 5분의 공연에 적용하였다. 그 결과 제안된 로봇 공연 플랫폼은 기존의 로봇 공연에서는 구현이 불가능했던 입체적이고 생동감 있는 모션을 구현할 수 있었다.

Keywords

References

  1. H. Huynh, H. Assadi, E. Riviere-Lorphevre, O. Verlinden, and K. Ahmadi, "Modelling the dynamics of industrial robots for milling operations," Robotics and Computer-Integrated Manufacturing, Vol. 61, pp. 101852, March 2020. https://doi.org/10.1016/j.rcim.2019.101852
  2. A. Morgan, K. Hang, W. Bircher, F. Alladkani, A. Gandhi, B. Calli, and A. Dollar, "Benchmarking Cluttered Robot Pick-and-Place Manipulation With the Box and Blocks Test," IEEE Robotics and Automation Letters, Vol. 5, No. 2, pp. 454-461, April 2020. https://doi.org/10.1109/LRA.2019.2961053
  3. J. Lee, P. Chang, and M. Jin, “Adaptive Integral Sliding Mode Control With Time-Delay Estimation for Robot Manipulators,” IEEE Transactions on Industrial Electronics, Vol. 64, No. 8, pp. 6796-6804, August 2017. https://doi.org/10.1109/TIE.2017.2698416
  4. H. Shah, M. Sulaiman, A. Shukor, and Z. Kamis, “An experiment of detection and localization in tooth saw shape for butt joint using KUKA welding robot,” The International Journal of Advanced Manufacturing Technology, Vol. 97, No. 5-8, pp. 3153-3162, May 2018. https://doi.org/10.1007/s00170-018-2092-9
  5. M. Kim, and S. Lee, “A Single-Lens Multi-Sensor Imaging System for 3-D Shape Inspection with a Wide Field of View,” International Journal of Optomechatronics, Vol. 6, No. 4, pp. 350-365, November 2012. https://doi.org/10.1080/15599612.2012.731716
  6. K. Kallu, W. Jie and M. Lee, “Sensorless Reaction Force Estimation of the End Effector of a Dual-arm Robot Manipulator Using Sliding Mode Control with a Sliding Perturbation Observer,” International Journal of Control, Automation and Systems, Vol. 16, No. 3, pp. 1367-1378, May 2018. https://doi.org/10.1007/s12555-017-0154-7
  7. M. Alebooyeh, and R. Urbanic, “Neural Network Model for Identifying Workspace, Forward and Inverse Kinematics of the 7-DOF YuMi 14000 ABB Collaborative Robot,” IFAC PapersOnLine, Vol. 52, No. 10, pp. 176-181, August 2019. https://doi.org/10.1016/j.ifacol.2019.10.019
  8. A. Ahmed, B. Koh, and Y. Lee, “A Comparison of Finite Control Set and Continuous Control Set Model Predictive Control Schemes for Speed Control of Induction Motors,” IEEE Transactions on Industrial Informatics, Vol. 14, No. 4, pp. 1334-1346, April 2018. https://doi.org/10.1109/TII.2017.2758393
  9. K. Vollmann, and M. Kuhnhen, "Exploiting robot simulation techniques to succeed in entertainment industry," Proceeding of IEEE International Conference on Industrial Technology, Bankok, Thailand, pp. 860-863, 2002.
  10. M. Katliar, M. Olivari, F. Drop, S. Nooij, M. Diehl, and H. Bulthoff, "Offline motion simulation framework: Optimizing motion simulator trajectories and parameters," Transportation Research Part F, Vol. 66, pp. 29-46, October 2019. https://doi.org/10.1016/j.trf.2019.07.019
  11. M. Kim, and J. Kim, “Augmented Reality System in Real Space using Mobile Projection,” Journal of Broadcast Engineering, Vol. 23, No. 5, pp. 622-627, September 2018. https://doi.org/10.5909/JBE.2018.23.5.622
  12. Y. Park, and S. Oh, "The Influence of the Appearance of 'Robot Actor' on the Features of the Theater," The Journal of the Korea Contents Association, Vol. 19, No. 11, pp. 507-515, November 2019. https://doi.org/10.5392/JKCA.2019.19.11.507
  13. O. Hirata, and H. Lee, "The Concept and Significance of Robot Theater," The Korean Journal of Arts and Studies, Vol. 16, pp. 77-97, June 2017. https://doi.org/10.20976/kjas.2017..16.004
  14. S. Nishiguchi, K. Ogawa, Y. Yoshikawa, T. Chikaraishi, O. Hirata, and H. Ishiguro, "Theatrical approach: Designing human-like behaviour in humanoid robots," Robotics and Autonomous Systems, Vol. 89, pp. 158-166, March 2017. https://doi.org/10.1016/j.robot.2016.11.017
  15. C. Becker-Asano, and H. Ishiguro, "Evaluating facial displays of emotion for the android robot Geminoid F," Proceeding of IEEE Workshop on Affective Computational Intelligence, Paris, France, 2011.
  16. O. Brown, "The machine as autonomous performer," Interactive Experience in the Digital Age, Springer, New York, pp. 75-90, 2014.
  17. L. Demers, "The Multiple Bodies of a Machine Performer," Robots and Art, pp. 273-306, Springer, Singapore, 2016.
  18. D. Go, H. Hyung, H. Yoon, and D. Lee, “The Implementation of Reacting Motion for Human-Like Robot Based on Position of Counterpart and Situation on the Stage,” Journal of Korean Institute of Intelligent Systems, Vol. 28, No. 5, pp. 457-463, October 2018. https://doi.org/10.5391/JKIIS.2018.28.5.457
  19. A. Madhani, "Brining physical characters to life," Proceeding of ACM/IEEE International Conference on Human-Robot Interaction (HRI), CA, USA, 2009.
  20. J. Rajruangrabin, and D. Popa, "Control of Head-Eye Coordination of Conversational Robotic Actors," IFAC Proceedings Volumes, Vol. 42, No. 16, pp. 729-734, Gifu, Japan, 2009.
  21. C. Causer, “Walt Disney Audio-Animatronics Timeline,” IEEE Potentials, Vol. 38, No. 5, pp. 24-25, August 2019. https://doi.org/10.1109/mpot.2019.2921531
  22. W. Press, S. Teukolsky, W. Vetterling, ang B. Flannery, Numerical Recipes in C, Cambridge University Press, Cambridge, pp. 113-116, 1992.
  23. V. Anand, Computer Graphics and Geometric Modeling for Engineers, John Wiley & Sons, New York, pp. 230-236, 1993.
  24. P. McKerrow, Introduction to Robotics, Addison-Wesley, Singapore, pp. 134-157, 1990.
  25. L. Meirovitch, Methods of Analytical Dynamics, McGraw-Hill, New York, pp. 67-81, 1970.
  26. K. Ogata, Modern Control Engineering, Prentice Hall, New Jersey, pp. 95-99,1990.