• Title/Summary/Keyword: industrial microbe

Search Result 36, Processing Time 0.023 seconds

Biofilter Treatment of Waste Air Containing Malodor and VOC: 1. Pressure Drop and Microbe-population Distribution of Biofilter with Improved Design (악취 및 VOC를 함유한 폐가스의 바이오필터 처리: 1. 개선된 바이오필터설계에 의한 압력강하와 미생물 population 분포)

  • Lee, Eun Ju;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.51 no.1
    • /
    • pp.127-135
    • /
    • 2013
  • In this study, both pressure drop and microbe-population-distribution were observed while running a novel biofilter system with improved design in which the biofilter system is composed of two, upper and lower biofilters with both equal feed-rates of up-flow and down-flow, respectively. Then they were compared with the pressure drop and microbe-population-distribution observed in a conventional biofilter of the same effective volume with unidirectional flow. The pressure drop-value of biofilter system with improved design turned out to be less at the incipient stage of run or steady-state long term operation by more than 40~80% of that of the conventional biofilter. The microbe-population-distribution was observed to be lower and higher at higher and lower column of biofilter, respectively, for both the conventional biofilter and the biofilter system with improved design. The microbe-media of waste-tire crumb showed much greater CFU counts than GAC. In the biofilter system with improved design, the $bottom{\rightarrow}up$ feeding of waste air showed greater microbe-population growth than the $top{\rightarrow}down$ feeding for both the microbe-media of waste-tire crumb and GAC. However, it was more prominent for the former than the latter. Comparing the microbe-population-distributions of both of the conventional biofilter and the biofilter system with improved design, the microbe-population of latter was distributed ca. 15 and 2.5 times more evenly for GAC and the media of waste-tire crumb, respectively, than that of former.

Development of Microbe Carrier for Bioremediation of Zn, As by using Desulfovibrio Desulfuricans and Zeolite in Artificial Sea Water (Desulfovibrio Desulfuricans과 제올라이트를 이용한 해양 내의 Zn, As 제거용 미생물 담체 개발)

  • Kim, In Hwa;Choi, Jin-Ha;Joo, Jeong Ock;Oh, Byung-Keun
    • KSBB Journal
    • /
    • v.30 no.3
    • /
    • pp.114-118
    • /
    • 2015
  • In this study, we have developed a microbe-carrier that combined Desulfovibrio desulfuricans and zeolite for removal of Zn and As in contaminated seawater. Desulfovibrio desulfuricans, one of the sulfate-reducing bacteria (SRB) microorganism was exhibited stable growth characteristics in highly salted water and strong resistance to Zn and As contaminated seawater. Moreover, zeolites are one of the most useful carrier to remove heavy metals from wastewaters. The results showed that SRB immobilized zeolite carrier can enhance removal ratio of Zn and As. In addition, heavy metals tended to be better removed in medium at conditions of $37^{\circ}C$. In case of heavy metal concentration, they were effectively removed ranging from 50 to 100 ppm. These results show that SRB-zeolite carriers hold great potential to remove cationic heavy metal species from industrial wastewater in marine environment.

The Actinobacterium Corynebacterium glutamicum, an Industrial Workhorse

  • Lee, Joo-Young;Na, Yoon-Ah;Kim, Eungsoo;Lee, Heung-Shick;Kim, Pil
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.5
    • /
    • pp.807-822
    • /
    • 2016
  • Starting as a glutamate producer, Corynebacterium glutamicum has played a variety of roles in the industrial production of amino acids, one of the most important areas of white biotechnology. From shortly after its genome information became available, C. glutamicum has been applied in various production processes for value-added chemicals, fuels, and polymers, as a key organism in industrial biotechnology alongside the surprising progress in systems biology and metabolic engineering. In addition, recent studies have suggested another potential for C. glutamicum as a synthetic biology platform chassis that could move the new era of industrial microbial biotechnology beyond the classical field. Here, we review the recent progress and perspectives in relation to C. glutamicum, which demonstrate it as one of the most promising and valuable workhorses in the field of industrial biotechnology.

A Study on the Synthesis and Refining of Isothiazoline Derivatives (Isothiazoline 유도체의 합성 및 정제에 관한 연구)

  • Sung, Ki-Chun;Kim, Ki-Jun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.93-102
    • /
    • 1997
  • Isothiazoline derivatives is widely used to food, medical drug and industrial goods, cosmetics etcs, and it makes to restrain and to sterilize a breeding of microbe as a preservative and a sterilizing agent. It differs with the raw material of paraoxybenzoic acid derivatives or imidazolydinyl urea to be in use at present, on the efficacy and effect, and has various characteristics. This synthesis makes 3,3'-dithiodipropionic chloride to add a thionyl chloride in 3,3'-dithiodipropionic acid, and 3,3'-dithiodipropionic methyl amide makes to synthesize in a reflux reaction the mono methyl amine to 3,3'-dithiodipropionic chloride. And last synthesis becomes to make chlorination-cyclization molecule doing a reflux reaction in the temperature of $90{\sim}100^{\circ}C$ to mix excessively thionyl chloride and ethylene dichloride to 3,3'-dithiodipropionic methyl amide. The last synthesis material has got in the mixture of 5-chloro-2-methyl-4-isothiazoline-3-one and 2-methyl-4-isothiazoline-3-one, and it is so-called isothiazoline derivatives. The purification of isothiazoline derivatives makes to fuse in ethyl acetate, and makes to decolorize and to deodorize in recrystallization. This experiment has been in synthesis and purification of isothiazoline derivatives, and has tried to measure on the antisepsis and sterilization function of microbe according to pH or content change.

Control and Investigation for Hazardous Characteristics of Metalworking Fluids Used in Korea - Control and Hazardous Characteristics of Soluble MWF (우리나라에서 사용하는 광물유(금속가공유)의 유해특성과 관리대책에 관한 연구 -수용성 금속가공유의 유해특성과 관리대책-)

  • Paik, Nam-won;Park, Dong-wook;Yoon, Chung-sik;Kim, Seung-won;Kim, Shin-bum;Kim, Kwi-suk
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.8 no.1
    • /
    • pp.67-75
    • /
    • 1998
  • The objectives of this study were both to evaluate the level and correlations of hazardous agents and to suggest measures to control industrial hygiene problems caused by using water-soluble metalworking f1uids(MWF). Geometric mean of formaldehyde(0.039 ppm) was higher than criteria of NIOSH(0.016ppm). Formaldehyde, originally existed in the biocide, is released and used to kill microbes in soluble MWF. Microbe concentrations were above $10^4No./mL$ in 14 MWF tanks among 20 tanks surveyed. Nitrosamines that is formed by reaction of nitrosating group and amines was detected to $18.4-47.1{\mu}g/m^3$. Formaldehyde concentration was low when microbes were abundant(r=-0.67, p=0.011), and high when open tank area was wide(r=0.75. p=0.012). The significant relationship between pH and microbes(r=-0.76. p=0.003) was also observed. The predominant bacteria species in MWF were Pseudomonas spp., Bacillus spp., Comamonas testosteroni, Acinetobacter haemolyticus, Bordertella bronchiseptica in order. Therefore, hazardous agents emitted by using water-soluble MWF seems to be correlated microbial growth. In order to minimize worker's exposure to several hazardous agents by an water-soluble MWF and to increase productivity, microbial growth must be controlled to the lowest level as possible. Administrative control as well as engineering control must comprehensively be applied to control microbe's growth in water-soluble MWF.

  • PDF

A Study on the TCE/PCE Removal Using Biofiltration and the Microbial Communities Variation Using DGGE Method (생물 여과를 이용한 TCE/PCE제거 및 DGGE법을 이용한 관련미생물 군집변화에 관한 연구)

  • Kim, Eung-In;Park, Ok-Hyun;Jung, In-Gyung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.11
    • /
    • pp.1161-1169
    • /
    • 2008
  • The removals of TCE and PCE vapor with or without a supply of toluene as a primary substrate were compared in a biofiltration process, and the variations of microbial communities associated with the removal were also investigated. As a result of investigations on the removals of TCE/PCE in a biofilter B within which TCE/PCE-acclimated sludge was attached on the surface of media without a supply of primary substrate, and those in another biofilter A where toluene-acclimated sludge was attached with a supply of toluene as a primary substrate, followings were found: (i) parts of microbes responsible to the decomposition of toluene vapor participate in the removal of chlorinated VOCs such as TCE and PCE, and (ii) effective biological removals of TCE and PCE vapor do not necessarily need cometabolism. Sequencing of 16S rDNA obtained from the band profile of DGGE (Denaturating Gradient Gel Electrophoresis), it was confirmed that: (i) uncultured alpha proteobacterium, uncultured Desulfitobacterium, uncultured Rhodobacteraceae bacterium, Cupriavidus necator, and Pseudomonas putida were found to be toluene-decomposing microbes, (ii) alpha proteobacterium HTCC396 is a TCE-removing microbe, (iii) Desulfitobacterium sp. is a PCE-decomposing microbe, and (iv) particularly, uncultured Desulfitobacterium sp. is probably a microbe decomposable not only toluene but also various chlorinated VOC vapor including TCE and PCE.

Antifungal Action of Ginkgo biloba Outer Seedcoat on Rice Sheath blight

  • Oh, Tae-Seok;Koo, Han-Mo;Yoon, Hei-Ryeo;Jeong, Nam-Su;Kim, Yeong-Jin;Kim, Chang-Ho
    • The Plant Pathology Journal
    • /
    • v.31 no.1
    • /
    • pp.61-66
    • /
    • 2015
  • From study of antifungal actions on the rice sheath blight by using the extract of Ginkgo biloba outer seedcoats, we found that the extracts of Ginkgo biloba outer seedcoats of all treatment concentrations had inhibited the rice sheath blight. Among them, the most effective concentration was 250 mg/l at which the growth of microbe was 26 mm and even at the packaging test, when sprayed the G. biloba outer seedcoats at the level of 250 mg/l, the damage rate of the rice sheath blight was identified as 13%. As a result investigating the antifungal activity by separating polysaccharides from G. biloba outer seedcoats, it showed that the clear zone of 14 mm or more was formed at the concentration of 250 mg/l or higher. Based on these results, we concluded that the G. biloba outer seedcoat is a natural substance with the antifungal activity on the rice sheath blight.

Development and industrial applications of versatile-usable genes of plant (식물 유용 유전자의 발굴 및 산업적 응용)

  • Oh, Boung-Jun
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2003.04a
    • /
    • pp.40-60
    • /
    • 2003
  • Fruit ripening represents a genetically synchronized system that involves developmental process unique to plant species, The phenomenon of ripening includes changes in color, texture, respiration rate, flavor, and aroma. Ripe fruits generally exhibit increased susceptibility to pathogen infection. However, fruits as a reproductive organ have their own protection mechanism against pathogens to maintain their integrity during seed maturation. In several nonclimacteric fruits, such as cherry, grape, and pepper, that do not have an ethylene burst during ripening, resistance against phytopathogens increases during ripening. Colletotrichum gloeosporioides is a causal agent of anthracnose disease in pepper plants (Capsicum annuum). We have established that C. gloeosporioides has susceptible and resistant interactions with pepper fruits during pre- and post-ripening stages, respectively. And we have interested in looking for a molecular mechanism that would explain the fungal resistance during ripening of nonclimacteric pepper fruit. In this presentation, a molecular characterization of the pepper esterase gene (PepEST) that is highly expressed in the resistant response will be demonstrated as an example of development and industrial applications of versatile-usable genes of plant.

  • PDF