Browse > Article
http://dx.doi.org/10.4014/jmb.1601.01053

The Actinobacterium Corynebacterium glutamicum, an Industrial Workhorse  

Lee, Joo-Young (Department of Biotechnology, The Catholic University of Korea)
Na, Yoon-Ah (Department of Biotechnology, The Catholic University of Korea)
Kim, Eungsoo (Department of Biological Engineering, Inha University)
Lee, Heung-Shick (Department of Biotechnology and Bioinformatics, Korea University)
Kim, Pil (Department of Biotechnology, The Catholic University of Korea)
Publication Information
Journal of Microbiology and Biotechnology / v.26, no.5, 2016 , pp. 807-822 More about this Journal
Abstract
Starting as a glutamate producer, Corynebacterium glutamicum has played a variety of roles in the industrial production of amino acids, one of the most important areas of white biotechnology. From shortly after its genome information became available, C. glutamicum has been applied in various production processes for value-added chemicals, fuels, and polymers, as a key organism in industrial biotechnology alongside the surprising progress in systems biology and metabolic engineering. In addition, recent studies have suggested another potential for C. glutamicum as a synthetic biology platform chassis that could move the new era of industrial microbial biotechnology beyond the classical field. Here, we review the recent progress and perspectives in relation to C. glutamicum, which demonstrate it as one of the most promising and valuable workhorses in the field of industrial biotechnology.
Keywords
Corynebacterium glutamicum; industrial microbe; synthetic biology; metabolic engineering;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Becker J, Schafer R, Kohlstedt M, Harder BJ, Borchert NS, Stoveken N, et al. 2013. Systems metabolic engineering of Corynebacterium glutamicum for production of the chemical chaperone ectoine. Microb. Cell Fact. 12: 110.   DOI
2 Becker J, Wittmann C. 2012. Systems and synthetic metabolic engineering for amino acid production – the heartbeat of industrial strain development. Curr. Opin. Biotechnol. 23: 718-726.   DOI
3 Becker J, Zelder O, Häfner S, Schröder H, Wittmann C. 2011. From zero to hero - design-based systems metabolic engineering of Corynebacterium glutamicum for ʟ-lysine production. Metab. Eng. 13: 159-168.   DOI
4 Bendt AK, Burkovski A, Schaffer S, Bott M, Farwick M, Hermann T. 2003. Towards a phosphoproteome map of Corynebacterium glutamicum. Proteomics 3: 1637-1646.   DOI
5 Billman-Jacobe H, Hodgson AL, Lightowlers M, Wood PR, Radford AJ. 1994. Expression of ovine gamma interferon in Escherichia coli and Corynebacterium glutamicum. Appl. Environ. Microbiol. 60: 1641-1645.
6 Billman-Jacobe H, Wang L, Kortt A, Stewart D, Radford A. 1995. Expression and secretion of heterologous proteases by Corynebacterium glutamicum. Appl. Environ. Microbiol. 61: 1610-1613.
7 Suzuki N, Okayama S, Nonaka H, Tsuge Y, Inui M, Yukawa H. 2005. Large-scale engineering of the Corynebacterium glutamicum genome. Appl. Environ. Microbiol. 71: 3369-3372.   DOI
8 Suzuki N, Tsuge Y, Inui M, Yukawa H. 2005. Cre/loxP-mediated deletion system for large genome rearrangements in Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 67: 225-233.   DOI
9 Suzuki N, Watanabe K, Okibe N, Tsuchida Y, Inui M, Yukawa H. 2009. Identification of new secreted proteins and secretion of heterologous amylase by C. glutamicum. Appl. Microbiol. Biotechnol. 82: 491-500.   DOI
10 Takeno S, Takasaki M, Urabayashi A, Mimura A, Muramatsu T, Mitsuhashi S, Ikeda M. 2013. Development of fatty acid-producing Corynebacterium glutamicum strains. Appl. Environ. Microbiol. 79: 6776-6783.   DOI
11 Tateno T, Fukuda H, Kondo A. 2007. Direct production of ʟ-lysine from raw corn starch by Corynebacterium glutamicum secreting Streptococcus bovis alpha-amylase using cspB promoter and signal sequence. Appl. Microbiol. Biotechnol. 77: 533-541.   DOI
12 Tsuchiya M, Morinaga Y. 1988. Genetic control systems of Escherichia coli can confer inducible expression of cloned genes in coryneform bacteria. Nat. Biotechnol. 6: 428-430.   DOI
13 Udaka S. 1960. Screening method for microorganisms accumulating metabolites and its use in the isolation of Micrococcus glutamicus. J. Bacteriol. 79: 754-755.
14 Unthan S, Baumgart M, Radek A, Herbst M, Siebert D, Brühl N, et al. 2015. Chassis organism from Corynebacterium glutamicum – a top-down approach to identify and delete irrelevant gene clusters. Biotechnol. J. 10: 290-301.   DOI
15 Buchholz J, Schwentner A, Brunnenkan B, Gabris C, Grimm S, Gerstmeir R, et al. 2013. Platform engineering of Corynebacterium glutamicum with reduced pyruvate dehydrogenase complex activity for improved production of ʟ-lysine, ʟ-valine, and 2-ketoisovalerate. Appl. Environ. Microbiol. 79: 5566-5575.   DOI
16 Blombach B, Buchholz J, Busche T, Kalinowski J, Takors R. 2013. Impact of different CO2/HCO3- levels on metabolism and regulation in Corynebacterium glutamicum. J. Biotechnol. 168: 331-340.   DOI
17 Blombach B, Riester T, Wieschalka S, Ziert C, Youn JW, Wendisch VF, Eikmanns BJ. 2011. Corynebacterium glutamicum tailored for efficient isobutanol production. Appl. Environ. Microbiol. 77: 3300-3310.   DOI
18 Brabetz W, Liebl W, Schleifer KH. 1991. Studies on the utilization of lactose by Corynebacterium glutamicum, bearing the lactose operon of Escherichia coli. Arch. Microbiol. 155: 607-612.   DOI
19 Buschke N, Schäfer R, Becker J, Wittmann C. 2013. Metabolic engineering of industrial platform microorganisms for biorefinery applications – optimization of substrate spectrum and process robustness by rational and evolutive strategies. Bioresour. Technol. 135: 544-554.   DOI
20 Cadenas RF, Gil JA, Martin JF. 1992. Expression of Streptomyces genes encoding extracellular enzymes in Brevibacterium lactofermentum: secretion proceeds by removal of the same leader peptide as in Streptomyces lividans. Appl. Microbiol. Biotechnol. 38: 362-369.   DOI
21 Choi JW, Yim SS, Lee SH, Kang TJ, Park SJ, Jeong KJ. 2015. Enhanced production of gamma-aminobutyrate (GABA) in recombinant Corynebacterium glutamicum by expressing glutamate decarboxylase active in expanded pH range. Microb. Cell Fact. 14: 21.   DOI
22 Vertès AA. 2013. Protein secretion systems of Corynebacterium glutamicum, pp. 351-389. In Yukawa H, Inui M (eds.). Corynebacterium glutamicum. Microbiobiology Monographs 23. Springer, Berlin, Germany.
23 van der Rest ME, Lange C, Molenaar D. 1999. A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl. Microbiol. Biotechnol. 52: 541-545.   DOI
24 Vasicová P, Abrhámová Z, Nesvera J, Pátek M, Sahm H, Eikmanns B. 1998. Integrative and autonomously replicating vectors for analysis of promoters in Corynebacterium glutamicum. Biotechnol. Tech. 12: 743-746.   DOI
25 Vasicova P, Patek M, Nesvera J, Sahm H, Eikmanns B. 1999. Analysis of the Corynebacterium glutamicum dapA promoter. J. Bacteriol. 181: 6188-6191.
26 Vertès AA, Inui M, Kobayashi M, Kurusu Y, Yukawa H. 1993. Presence of mrr- and mcr-like restriction systems in coryneform bacteria. Res. Microbiol. 144: 181-185.   DOI
27 Vogt M, Haas S, Klaffl S, Polen T, Eggeling L, van Ooyen J, Bott M. 2014. Pushing product formation to its limit: metabolic engineering of Corynebacterium glutamicum for ʟ-leucine overproduction. Metab. Eng. 22: 40-52.   DOI
28 Wada M, Awano N, Haisa K, Takagi H, Nakamori S. 2002. Purification, characterization and identification of cysteine desulfhydrase of Corynebacterium glutamicum, and its relationship to cysteine production. FEMS Microbiol. Lett. 217: 103-107.   DOI
29 Watanabe K, Tsuchida Y, Okibe N, Teramoto H, Suzuki N, Inui M, Yukawa H. 2009. Scanning the Corynebacterium glutamicum R genome for high-efficiency secretion signal sequences. Microbiology 155: 741-750.   DOI
30 Cramer A, Gerstmeir R, Schaffer S, Bott M, Eikmanns BJ. 2006. Identification of RamA, a novel LuxR-type transcriptional regulator of genes involved in acetate metabolism of Corynebacterium glutamicum. J. Bacteriol. 188: 2554-2567.   DOI
31 Date M, Itaya H, Matsui H, Kikuchi Y. 2006. Secretion of human epidermal growth factor by Corynebacterium glutamicum. Lett. Appl. Microbiol. 42: 66-70.   DOI
32 Date M, Yokoyama K, Umezawa Y, Matsui H, Kikuchi Y. 2003. Production of native-type Streptoverticillium mobaraense transglutaminase in Corynebacterium glutamicum. Appl. Environ. Microbiol. 69: 3011-3014.   DOI
33 Date M, Yokoyama K, Umezawa Y, Matsui H, Kikuchi Y. 2004. High level expression of Streptomyces mobaraensis transglutaminase in Corynebacterium glutamicum using a chimeric pro-region from Streptomyces cinnamoneus transglutaminase. J. Biotechnol. 110: 219-226.   DOI
34 Dusch N, Pühler A, Kalinowski J. 1999. Expression of the Corynebacterium glutamicum panD gene encoding ʟ-aspartate-decarboxylase leads to pantothenate overproduction in Escherichia coli. Appl. Environ. Microbiol. 65: 1530-1539.
35 Eikmanns BJ, Kleinertz E, Liebl W, Sahm H. 1991. A family of Corynebacterium glutamicum/Escherichia coli shuttle vectors for cloning, controlled gene expression, and promoter probing. Gene 102: 93-98.   DOI
36 Gerstmeir R, Cramer A, Dangel P, Schaffer S, Eikmanns BJ. 2004. RamB, a novel transcriptional regulator of genes involved in acetate metabolism of Corynebacterium glutamicum. J. Bacteriol. 186: 2798-2809.   DOI
37 Hänßler E, Müller T, Palumbo K, Patek M, Brocker M, Krämer R, Burkovski A. 2009. A game with many players: control of gdh transcription in Corynebacterium glutamicum. J. Biotechnol. 142: 114-122.   DOI
38 Wendisch VF, Bott M, Kalinowski J, Oldiges M, Wiechert W. 2006. Emerging Corynebacterium glutamicum systems biology. J. Biotechnol. 124: 74-92.   DOI
39 Wendisch VF. 2003. Genome-wide expression analysis in Corynebacterium glutamicum using DNA microarrays. J. Biotechnol. 104: 273-285.   DOI
40 Wendisch VF, Bott M, Eikmanns BJ. 2006. Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for biotechnological production of organic acids and amino acids. Curr. Opin. Microbiol. 9: 268-274.   DOI
41 Wieschalka S, Blombach B, Bott M, Eikmanns BJ. 2013. Bio-based production of organic acids with Corynebacterium glutamicum. Microb. Biotechnol. 6: 87-102.   DOI
42 Yamamoto S, Suda M, Niimi S, Inui M, Yukawa H. 2013. Strain optimization for efficient isobutanol production using Corynebacterium glutamicum under oxygen deprivation. Biotechnol. Bioeng. 110: 2938-2948.   DOI
43 Yim S, An S, Choi J, Ryu A, Jeong K. 2014. High-level secretory production of recombinant single-chain variable fragment (scFv) in Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 98: 273-284.   DOI
44 Yim SS, An SJ, Kang M, Lee J, Jeong KJ. 2013. Isolation of fully synthetic promoters for high-level gene expression in Corynebacterium glutamicum. Biotechnol. Bioeng. 110: 2959-2969.   DOI
45 Yim SS, Choi JW, Lee RJ, Lee YJ, Lee SH, Kim SY, Jeong KJ. 2016. Development of a new platform for secretory production of recombinant proteins in Corynebacterium glutamicum. Biotechnol. Bioeng. 113: 163-172.   DOI
46 Youn JW, Jolkver E, Kramer R, Marin K, Wendisch VF. 2008. Identification and characterization of the dicarboxylate uptake system DccT in Corynebacterium glutamicum. J. Bacteriol. 190: 6458-6466.   DOI
47 Hasegawa S, Suda M, Uematsu K, Natsuma Y, Hiraga K, Jojima T, et al. 2013. Engineering of Corynebacterium glutamicum for high-yield ʟ-valine production under oxygen deprivation conditions. Appl. Environ. Microbiol. 79: 1250-1257.   DOI
48 Hüser AT, Chassagnole C, Lindley ND, Merkamm M, Guyonvarch A, Elišáková V, et al. 2005. Rational design of a Corynebacterium glutamicum pantothenate production strain and its characterization by metabolic flux analysis and genome-wide transcriptional profiling. Appl. Environ. Microbiol. 71: 3255-3268.   DOI
49 Hao N, Mu Jr, Hu N, Xu S, Yan M, Li Y, et al. 2015. Improvement of ʟ-citrulline production in Corynebacterium glutamicum by ornithine acetyltransferase. J. Ind. Microbiol. Biotechnol. 42: 307-313.   DOI
50 Hartbrich A, Schmitz G, Weuster-Botz D, de Graaf AA, Wandrey C. 1996. Development and application of a membrane cyclone reactor for in vivo NMR spectroscopy with high microbial cell densities. Biotechnol. Bioeng. 51: 624-635.
51 Hasegawa S, Uematsu K, Natsuma Y, Suda M, Hiraga K, Jojima T, et al. 2012. Improvement of the redox balance increases ʟ-valine production by Corynebacterium glutamicum under oxygen deprivation conditions. Appl. Environ. Microbiol. 78: 865-875.   DOI
52 Hayashi M, Mizoguchi H, Shiraishi N, Obayashi M, Nakagawa S, Imai J-I, et al. 2002. Transcriptome analysis of acetate metabolism in Corynebacterium glutamicum using a newly developed metabolic array. Biosci. Biotechnol. Biochem. 66: 1337-1344.   DOI
53 Haynes JA, Britz ML. 1990. The effect of growth conditions of Corynebacterium glutamicum on the transformation frequency obtained by electroporation. J. Gen. Microbiol. 136: 255-263.   DOI
54 Zhang B, Zhou N, Liu Y-M, Liu C, Lou C-B, Jiang C-Y, Liu S-J. 2015. Ribosome binding site libraries and pathway modules for shikimic acid synthesis with Corynebacterium glutamicum. Microb. Cell Fact. 14: 71.   DOI
55 Youn JW, Jolkver E, Kramer R, Marin K, Wendisch VF. 2009. Characterization of the dicarboxylate transporter DctA in Corynebacterium glutamicum. J. Bacteriol. 191: 5480-5488.   DOI
56 Yukawa H, Omumasaba CA, Nonaka H, Kós P, Okai N, Suzuki N, et al. 2007. Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R. Microbiology 153: 1042-1058.   DOI
57 Zahoor A, Otten A, Wendisch VF. 2014. Metabolic engineering of Corynebacterium glutamicum for glycolate production. J. Biotechnol. 192: 366-375.   DOI
58 Zhang C, Zhang J, Kang Z, Du G, Chen J. 2015. Rational engineering of multiple module pathways for the production of ʟ-phenylalanine in Corynebacterium glutamicum. J. Ind. Microbiol. Biotechnol. 42: 787-797.   DOI
59 Zhang D, Guan D, Liang J, Guo C, Xie X, Zhang C, et al. 2014. Reducing lactate secretion by ldhA deletion in ʟ-glutamate-producing strain Corynebacterium glutamicum GDK-9. Braz. J. Microbiol. 45: 1477-1483.   DOI
60 Zhang Y, Shang X, Lai S, Zhang G, Liang Y, Wen T. 2012. Development and application of an arabinose-inducible expression system by facilitating inducer uptake in Corynebacterium glutamicum. Appl. Environ. Microbiol. 78: 5831-5838.   DOI
61 Zhu Q, Zhang X, Luo Y, Guo W, Xu G, Shi J, Xu Z. 2015. ʟ-Serine overproduction with minimization of by-product synthesis by engineered Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 99: 1665-1673.   DOI
62 Ikeda M, Katsumata R. 1992. Metabolic engineering to produce tyrosine or phenylalanine in a tryptophan-producing Corynebacterium glutamicum strain. Appl. Environ. Microbiol. 58: 781-785.
63 Hermann T, Pfefferle W, Baumann C, Busker E, Schaffer S, Bott M, et al. 2001. Proteome analysis of Corynebacterium glutamicum. Electrophoresis 22: 1712-1723.   DOI
64 Holatko J, Elisakova V, Prouza M, Sobotka M, Nesvera J, Patek M. 2009. Metabolic engineering of the ʟ-valine biosynthesis pathway in Corynebacterium glutamicum using promoter activity modulation. J. Biotechnol. 139: 203-210.   DOI
65 Ikeda M. 2003. Amino acid production processes. Adv. Biochem. Eng. Biotechnol. 79: 1-35.
66 Ikeda M, Katsumata R. 1998. A novel system with positive selection for the chromosomal integration of replicative plasmid DNA in Corynebacterium glutamicum. Microbiology 144: 1863-1868.   DOI
67 Ikeda M, Katsumata R. 1999. Hyperproduction of tryptophan by Corynebacterium glutamicum with the modified pentose phosphate pathway. Appl. Environ. Microbiol. 65: 2497-2502.
68 Ikeda M, Nakagawa S. 2003. The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl. Microbiol. Biotechnol. 62: 99-109.   DOI
69 Inui M, Murakami S, Okino S, Kawaguchi H, Vertès AA, Yukawa H. 2004. Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J. Mol. Microbiol. Biotechnol. 7: 182-196.   DOI
70 Jakoby M, Ngouoto-Nkili C-E, Burkovski A. 1999. Construction and application of new Corynebacterium glutamicum vectors. Biotechnol. Tech. 13: 437-441.   DOI
71 Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, et al. 2003. The comp lete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of ʟ-aspartate-derived amino acids and vitamins. J. Biotechnol. 104: 5-25.   DOI
72 Abe S, Takayama K-I, Kinoshita S. 1967. Taxonomical studies on glutamic acid-producing bacteria. J. Gen. Appl. Microbiol. 13: 279-301.   DOI
73 Jensen JV, Wendisch VF. 2013. Ornithine cyclodeaminase-based proline production by Corynebacterium glutamicum. Microb. Cell Fact. 12: 63.   DOI
74 Jo JH, Seol HY, Lee YB, Kim MH, Hyun HH, Lee HH. 2012. Disruption of genes for the enhanced biosynthesis of alpha-ketoglutarate in Corynebacterium glutamicum. Can. J. Microbiol. 58: 278-286.   DOI
75 Jojima T, Fujii M, Mori E, Inui M, Yukawa H. 2010. Engineering of sugar metabolism of Corynebacterium glutamicum for production of amino acid ʟ-alanine under oxygen deprivation. Appl. Microbiol. Biotechnol. 87: 159-165.   DOI
76 Jojima T, Noburyu R, Sasaki M, Tajima T, Suda M, Yukawa H, Inui M. 2015. Metabolic engineering for improved production of ethanol by Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 99: 1165-1172.   DOI
77 Kalinowski J, Wolters D, Poetsch A. 2008. Proteomics of Corynebacterium glutamicum and other corynebacteria, pp. 55-78. In Burkovski A (ed.). Corynebacteria: Genomics and Molecular Biology. Caister Academic Press, Norfolk, UK.
78 Kang M-K, Lee J, Um Y, Lee T, Bott M, Park S, Woo H. 2014. Synthetic biology platform of CoryneBrick vectors for gene expression in Corynebacterium glutamicum and its application to xylose utilization. Appl. Microbiol. Biotechnol. 98: 5991-6002.   DOI
79 Kang MK, Eom JH, Kim Y, Um Y, Woo HM. 2014. Biosynthesis of pinene from glucose using metabolically-engineered Corynebacterium glutamicum. Biotechnol. Lett. 36: 2069-2077.   DOI
80 Adham SA, Honrubia P, Diaz M, Fernandez-Abalos JM, Santamaria RI, Gil JA. 2001. Expression of the genes coding for the xylanase Xys1 and the cellulase Cel1 from the straw-decomposing Streptomyces halstedii JM8 cloned into the amino-acid producer Brevibacterium lactofermentum ATCC13869. Arch. Microbiol. 177: 91-97.   DOI
81 An SJ, Yim SS, Jeong KJ. 2013. Development of a secretion system for the production of heterologous proteins in Corynebacterium glutamicum using the Porin B signal peptide. Protein Express. Purif. 89: 251-257.   DOI
82 Asakura Y, Kimura E, Usuda Y, Kawahara Y, Matsui K, Osumi T, Nakamatsu T. 2007. Altered metabolic flux due to deletion of odhA causes ʟ-glutamate overproduction in Corynebacterium glutamicum. Appl. Environ. Microbiol. 73: 1308-1319.   DOI
83 Bückle-Vallant V, Krause F, Messerschmidt S, Eikmanns B. 2014. Metabolic engineering of Corynebacterium glutamicum for 2-ketoisocaproate production. Appl. Microbiol. Biotechnol. 98: 297-311.   DOI
84 Bardonnet N, Blanco C. 1991. Improved vectors for transcriptional signal screening in corynebacteria. FEMS Microbiol. Lett. 68: 97-102.   DOI
85 Baumgart M, Unthan S, Rückert C, Sivalingam J, Grünberger A, Kalinowski J, et al. 2013. Construction of a prophage-free variant of Corynebacterium glutamicum ATCC 13032 for use as a platform strain for basic research and industrial biotechnology. Appl. Environ. Microbiol. 79: 6006-6015.   DOI
86 Becker J, Klopprogge C, Zelder O, Heinzle E, Wittmann C. 2005. Amplified expression of fructose 1,6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources. Appl. Environ. Microbiol. 71: 8587-8596.   DOI
87 Katsumata R, Ozaki A, Oka T, Furuya A. 1984. Protoplast transformation of glutamate-producing bacteria with plasmid DNA. J. Bacteriol. 159: 306-311.
88 Kang MS, Han SS, Kim MY, Kim BY, Huh JP, Kim HS, Lee JH. 2014. High-level expression in Corynebacterium glutamicum of nitrile hydratase from Rhodococcus rhodochrous for acrylamide production. Appl. Microbiol. Biotechnol. 98: 4379-4387.   DOI
89 Kass F, Hariskos I, Michel A, Brandt HJ, Spann R, Junne S, et al. 2014. Assessment of robustness against dissolved oxygen/substrate oscillations for C. glutamicum DM1933 in two-compartment bioreactor. Bioproc. Biosyst. Eng. 37: 1151-1162.   DOI
90 Katsumata R MT, Kikuchi Y, Kino K. 1986. Threonine production by the lysine producing strain of Corynebacterium glutamicum with amplified threonine biosynthetic operon, pp. 217-226. In Alacevic M, Hranueli D, Toman Z (eds.). Genetics of Industrial Microorganisms. Ognjen Prica Printing Works.
91 Kawaguchi H, Sasaki M, Vertès AA, Inui M, Yukawa H. 2009. Identification and functional analysis of the gene cluster for ʟ-arabinose utilization in Corynebacterium glutamicum. Appl. Environ. Microbiol. 75: 3419-3429.   DOI
92 Kawaguchi H, Vertès AA, Okino S, Inui M, Yukawa H. 2006. Engineering of a xylose metabolic pathway in Corynebacterium glutamicum. Appl. Environ. Microbiol. 72: 3418-3428.   DOI
93 Kelle R, Hermann T, Weuster-Botz D, Eggeling L, Krämer R, Wandrey C. 1996. Glucose-controlled l-isoleucine fed-batch production with recombinant strains of Corynebacterium glutamicum. J. Biotechnol. 50: 123-136.   DOI
94 Kim HI, Nam JY, Cho JY, Lee CS, Park YJ. 2013. Nextgeneration sequencing-based transcriptome analysis of ʟ-lysine-producing Corynebacterium glutamicum ATCC 21300 strain. J. Microbiol. 51: 877-880.   DOI
95 Kikuchi Y, Date M, Yokoyama K, Umezawa Y, Matsui H. 2003. Secretion of active-form Streptoverticillium mobaraense transglutaminase by Corynebacterium glutamicum: processing of the pro-transglutaminase by a cosecreted subtilisin-like protease from Streptomyces albogriseolus. Appl. Environ. Microbiol. 69: 358-366.   DOI
96 Kikuchi Y, Itaya H, Date M, Matsui K, Wu LF. 2008. Production of Chryseobacterium proteolyticum protein-glutaminase using the twin-arginine translocation pathway in Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 78: 67-74.   DOI
97 Kikuchi Y, Itaya H, Date M, Matsui K, Wu LF. 2009. TatABC overexpression improves Corynebacterium glutamicum Tat-dependent protein secretion. Appl. Environ. Microbiol. 75: 603-607.   DOI
98 Kim SY, Lee J, Lee SY. 2015. Metabolic engineering of Corynebacterium glutamicum for the production of ʟ-ornithine. Biotechnol. Bioeng. 112: 416-421.   DOI
99 Kind S, Jeong WK, Schröder H, Wittmann C. 2010. Systems-wide metabolic pathway engineering in Corynebacterium glutamicum for bio-based production of diaminopentane. Metab. Eng. 12: 341-351.   DOI
100 Kind S, Jeong WK, Schröder H, Zelder O, Wittmann C. 2010. Identification and elimination of the competing N-acetyldiaminopentane pathway for improved production of diaminopentane by Corynebacterium glutamicum. Appl. Environ. Microbiol. 76: 5175-5180.   DOI
101 Kind S, Kreye S, Wittmann C. 2011. Metabolic engineering of cellular transport for overproduction of the platform chemical 1,5-diaminopentane in Corynebacterium glutamicum. Metab. Eng. 13: 617-627.   DOI
102 Kortmann M, Kuhl V, Klaffl S, Bott M. 2015. A chromosomally encoded T7 RNA polymerase-dependent gene expression system for Corynebacterium glutamicum: construction and comparative evaluation at the single-cell level. Microb. Biotechnol. 8: 253-265.   DOI
103 Kind S, Neubauer S, Becker J, Yamamoto M, Völkert M, Abendroth GV, et al. 2014. From zero to hero – production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum. Metab. Eng. 25: 113-123.   DOI
104 Kinoshita S, Udaka S, Shimono M. 1957. Studies on the amino acid fermentation. Part 1. Production of ʟ-glutamic acid by various microorganisms. J. Gen. Appl. Microbiol. 3: 193-205.   DOI
105 Knoppova M, Phensaijai M, Vesely M, Zemanova M, Nesvera J, Patek M. 2007. Plasmid vectors for testing in vivo promoter activities in Corynebacterium glutamicum and Rhodococcus erythropolis. Curr. Microbiol. 55: 234-239.   DOI
106 Kotrba P, Inui M, Yukawa H. 2001. The ptsI gene encoding enzyme I of the phosphotransferase system of Corynebacterium glutamicum. Biochem. Biophys. Res. Commun. 289: 1307-1313.   DOI
107 Kromer JO, Sorgenfrei O, Klopprogge K, Heinzle E, Wittmann C. 2004. In-depth profiling of lysine-producing Corynebacterium glutamicum: by combined analysis of the transcriptome, metabolome, and fluxome. J. Bacteriol. 186: 1769-1784.   DOI
108 Lee BH, Lee SB, Kim HS, Jeong KJ, Park JY, Park KM, Lee JW. 2015. Whole cell bioconversion of ricinoleic acid to 12-ketooleic acid by recombinant Corynebacterium glutamicum-based biocatalyst. J. Microbiol. Biotechnol. 25: 452-458.   DOI
109 Lee J. 2014. Development and characterization of expression vectors for Corynebacterium glutamicum. J. Microbiol. Biotechnol. 24: 70-79.   DOI
110 Lee JY, Choy HE, Lee JH, Kim GJ. 2015. Generation of minicells from an endotoxin-free gram-positive strain Corynebacterium glutamicum. J. Microbiol. Biotechnol. 25: 554-558.   DOI
111 Lee JY, Seo J, Kim ES, Lee HS, Kim P. 2013. Adaptive evolution of Corynebacterium glutamicum resistant to oxidative stress and its global gene expression profiling. Biotechnol. Lett. 35: 709-717.   DOI
112 Lee SK, Keasling JD. 2006. A Salmonella-based, propionateinducible, expression system for Salmonella enterica. Gene 377: 6-11.   DOI
113 Liebl W, Ehrmann M, Ludwig W, KH. S. 1991. Transfer of Brevibacterium divaricatum DSM 20297T, “Brevibacterium flavum” DSM 20411, “Brevibacterium lactofermentum” DSM 20412 and DSM 1412, and Corynebacterium lilium DSM 20137T to Corynebacterium glutamicum and their distinction by rRNA gene restriction patterns. Int. J. Syst. Evol. Microbiol. 41: 255-260.
114 Liebl W, Sinskey AJ, Schleifer KH. 1992. Expression, secretion, and processing of staphylococcal nuclease by Corynebacterium glutamicum. J. Bacteriol. 174: 1854-1861.   DOI
115 Liu Q, Ouyang S-P, Kim J, Chen G-Q. 2007. The impact of PHB accumulation on ʟ-glutamate production by recombinant Corynebacterium glutamicum. J. Biotechnol. 132: 273-279.   DOI
116 Liu Q, Zhang J, Wei X-X, Ouyang S-P, Wu Q, Chen G-Q. 2008. Microbial production of ʟ-glutamate and ʟ-glutamine by recombinant Corynebacterium glutamicum harboring Vitreoscilla hemoglobin gene vgb. Appl. Microbiol. Biotechnol. 77: 1297-1304.   DOI
117 Loos A, Glanemann C, Willis LB, O’Brien XM, Lessard PA, Gerstmeir R, et al. 2001. Development and validation of Corynebacterium DNA microarrays. Appl. Microbiol. Biotechnol. 67: 2310-2318.
118 Mentz A, Neshat A, Pfeifer-Sancar K, Puhler A, Ruckert C, Kalinowski J. 2013. Comprehensive discovery and characterization of small RNAs in Corynebacterium glutamicum ATCC 13032. BMC Genomics 14: 714.   DOI
119 Matsuda Y, Itaya H, Kitahara Y, Theresia NM, Kutukova EA, Yomantas YAV, et al. 2014. Double mutation of cell wall proteins CspB and PBP1a increases secretion of the antibody Fab fragment from Corynebacterium glutamicum. Microb. Cell Fact. 13: 56.   DOI
120 Matsumoto K, Kitagawa K, Jo S-J, Song Y, Taguchi S. 2011. Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in recombinant Corynebacterium glutamicum using propionate as a precursor. J. Biotechnol. 152: 144-146.   DOI
121 Mizukami T, Hamu A, Ikeda M, Oka T, Katsumata R. 1994. Cloning of the ATP phosphoribosyl transferase gene of Corynebacterium glutamicum and application of the gene to ʟ-histidine production. Biosci. Biotechnol. Biochem. 58: 635-638.   DOI
122 Muffler A, Bettermann S, Haushalter M, Hörlein A, Neveling U, Schramm M, Sorgenfrei O. 2002. Genome-wide transcription profiling of Corynebacterium glutamicum after heat shock and during growth on acetate and glucose. J. Biotechnol. 98: 255-268.   DOI
123 Nakamura Y, Nishio Y, Ikeo K, Gojobori T. 2003. The genome stability in Corynebacterium species due to lack of the recombinational repair system. Gene 317: 149-155.   DOI
124 Nakayama K, Tanaka H, Hagino H, Kinoshita S. 1966. Studies on lysine fermentation: Part V. Concerted feedback inhibition of aspartokinase and the absence of lysine inhibition on aspartic semialdehyde-pyruvate condensation in Micrococcus glutamicus. Agric. Biol. Chem. 30: 611-616.
125 Okibe N, Suzuki N, Inui M, Yukawa H. 2010. Isolation, evaluation and use of two strong, carbon source-inducible promoters from Corynebacterium glutamicum. Lett. Appl. Microbiol. 50: 173-180.   DOI
126 Neshat A, Mentz A, Ruckert C, Kalinowski J. 2014. Transcriptome sequencing revealed the transcriptional organization at ribosome-mediated attenuation sites in Corynebacterium glutamicum and identified a novel attenuator involved in aromatic amino acid biosynthesis. J. Biotechnol. 190: 55-63.   DOI
127 Oberreuter H, Charzinski J, Scherer S. 2002. Intraspecific diversity of Brevibacterium linens, Corynebacterium glutamicum and Rhodococcus erythropolis based on partial 16S rDNA sequence analysis and Fourier-transform infrared (FT-IR) spectroscopy. Microbiology 148: 1523-1532.   DOI
128 Oh Y, Choi J, Kim E, Song B, Jeong K, Park K, et al. 2015. Construction of synthetic promoter-based expression cassettes for the production of cadaverine in recombinant Corynebacterium glutamicum. Appl. Biochem. Biotechnol. 176: 1-11.   DOI
129 Okino S, Inui M, Yukawa H. 2005. Production of organic acids by Corynebacterium glutamicum under oxygen deprivation. Appl. Microbiol. Biotechnol. 68: 475-480.   DOI
130 Okino S, Suda M, Fujikura K, Inui M, Yukawa H. 2008. Production of D-lactic acid by Corynebacterium glutamicum under oxygen deprivation. Appl. Microbiol. Biotechnol. 78: 449-454.   DOI
131 Otten A, Brocker M, Bott M. 2015. Metabolic engineering of Corynebacterium glutamicum for the production of itaconate. Metab. Eng. 30: 156-165.   DOI
132 Pátek M, Holátko J, Busche T, Kalinowski J, Nešvera J. 2013. Corynebacterium glutamicum promoters: a practical approach. Microb. Biotechnol. 6: 103-117.   DOI
133 Park SH, Kim HU, Kim TY, Park JS, Kim S-S, Lee SY. 2014. Metabolic engineering of Corynebacterium glutamicum for ʟ-arginine production. Nat. Commun. 5: 4618.
134 Paradis FW, Warren RA, Kilburn DG, Miller RC Jr. 1987. The expression of Cellulomonas fimi cellulase genes in Brevibacterium lactofermentum. Gene 61: 199-206.   DOI
135 Park S, Lee S, Park I, Choi J, Jeong W, Kim Y, Lee H. 2004. Isolation and characterization of transcriptional elements from Corynebacterium glutamicum. J. Microbiol. Biotechnol. 14: 789-795.
136 Park SD, Lee JY, Sim SY, Kim Y, Lee HS. 2007. Characteristics of methionine production by an engineered Corynebacterium glutamicum strain. Metab. Eng. 9: 327-336.   DOI
137 Patek M, Nesvera J, Guyonvarch A, Reyes O, Leblon G. 2003. Promoters of Corynebacterium glutamicum. J. Biotechnol. 104: 311-323.   DOI
138 Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Mockel B, Sahm H, Eikmanns BJ. 2001. Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum. J. Mol. Microbiol. Biotechnol. 3: 295-300.
139 Peyret JL, Bayan N, Joliff G, Gulik-Krzywicki T, Mathieu L, Schechter E, Leblon G. 1993. Characterization of the cspB gene encoding PS2, an ordered surface-layer protein in Corynebacterium glutamicum. Mol. Microbiol. 9: 97-109.   DOI
140 Pfeifer-Sancar K, Mentz A, Rückert C, Kalinowski J. 2013. Comprehensive analysis of the Corynebacterium glutamicum transcriptome using an improved RNAseq technique. BMC Genomics 14: 888.   DOI
141 Salim K, Haedens V, Content J, Leblon G, Huygen K. 1997. Heterologous expression of the Mycobacterium tuberculosis gene encoding antigen 85A in Corynebacterium glutamicum. Appl. Environ. Microbiol. 63: 4392-4400.
142 Plassmeier JK, Busche T, Molck S, Persicke M, Puhler A, Ruckert C, Kalinowski J. 2013. A propionate-inducible expression system based on the Corynebacterium glutamicum prpD2 promoter and PrpR activator and its application for the redirection of amino acid biosynthesis pathways. J. Biotechnol. 163: 225-232.   DOI
143 Ravasi P, Peiru S, Gramajo H, Menzella HG. 2012. Design and testing of a synthetic biology framework for genetic engineering of Corynebacterium glutamicum. Microb. Cell Fact. 11: 147.   DOI
144 Rytter J, Helmark S, Chen J, Lezyk M, Solem C, Jensen P. 2014. Synthetic promoter libraries for Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 98: 2617-2623.   DOI
145 Santamaria R, Gil J, Mesas JM, Martin JF. 1984. Characterization of an endogenous plasmid and development of cloning vectors and a transformation system in Brevibacterium lactofermentum. J. Gen Microbiol. 130: 2237-2246.
146 Sasaki M, Jojima T, Inui M, Yukawa H. 2008. Simultaneous utilization of D-cellobiose, D-glucose, and D-xylose by recombinant Corynebacterium glutamicum under oxygen-deprived conditions. Appl. Microbiol. Biotechnol. 81: 691-699.   DOI
147 Schäfer A, Schwarzer A, Kalinowski J, Pühler A. 1994. Cloning and characterization of a DNA region encoding a stress-sensitive restriction system from Corynebacterium glutamicum ATCC 13032 and analysis of its role in intergeneric conjugation with Escherichia coli. J. Bacteriol. 176: 7309-7319.   DOI
148 Schneider J, Eberhardt D, Wendisch VF. 2012. Improving putrescine production by Corynebacterium glutamicum by fine-tuning ornithine transcarbamoylase activity using a plasmid addiction system. Appl. Microbiol. Biotechnol. 95: 169-178.   DOI
149 Schaffer S, Weil B, Nguyen VD, Dongmann G, Gunther K, Nickolaus M, et al. 2001. A high-resolution reference map for cytoplasmic and membrane-associated proteins of Corynebacterium glutamicum. Electrophoresis 22: 4404-4422.   DOI
150 Scheele S, Oertel D, Bongaerts J, Evers S, Hellmuth H, Maurer K-H, et al. 2013. Secretory production of an FAD cofactor-containing cytosolic enzyme (sorbitol–xylitol oxidase from Streptomyces coelicolor) using the twin-arginine translocation (Tat) pathway of Corynebacterium glutamicum. Microb. Biotechnol. 6: 202-206.   DOI
151 Schneider J, Niermann K, Wendisch VF. 2011. Production of the amino acids ʟ-glutamate, ʟ-lysine, ʟ-ornithine and ʟ-arginine from arabinose by recombinant Corynebacterium glutamicum. J. Biotechnol. 154: 191-198.   DOI
152 Schneider J, Wendisch V. 2010. Putrescine production by engineered Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 88: 859-868.   DOI
153 Schwarzer A, Puhler A. 1991. Manipulation of Corynebacterium glutamicum by gene disruption and replacement. Biotechnology (NY) 9: 84-87.   DOI
154 Shi F, Jiang J, Li Y, Li Y, Xie Y. 2013. Enhancement of γ-aminobutyric acid production in recombinant Corynebacterium glutamicum by co-expressing two glutamate decarboxylase genes from Lactobacillus brevis. J. Ind. Microbiol. Biotechnol. 40: 1285-1296.   DOI
155 Shi F, Li Y. 2011. Synthesis of γ-aminobutyric acid by expressing Lactobacillus brevis-derived glutamate decarboxylase in the Corynebacterium glutamicum strain ATCC 13032. Biotechnol. Lett. 33: 2469-2474.   DOI
156 Smith MD, Flickinger JL, Lineberger DW, Schmidt B. 1986. Protoplast transformation in coryneform bacteria and introduction of an alpha-amylase gene from Bacillus amyloliquefaciens into Brevibacterium lactofermentum. Appl. Environ. Microbiol. 51: 634-639.
157 Siebert D, Wendisch VF. 2015. Metabolic pathway engineering for production of 1,2-propanediol and ʟ-propanol by Corynebacterium glutamicum. Biotechnol. Biofuels 8: 91.   DOI
158 Silberbach M, Schäfer M, Hüser AT, Kalinowski J, Pühler A, Krämer R, Burkovski A. 2005. Adaptation of Corynebacterium glutamicum to ammonium limitation: a global analysis using transcriptome and proteome techniques. Appl. Environ. Microbiol. 71: 2391-2402.   DOI
159 Smith KM, Cho KM, Liao JC. 2010. Engineering Corynebacterium glutamicum for isobutanol production. Appl. Microbiol. Biotechnol. 87: 1045-1055.   DOI
160 Stäbler N, Oikawa T, Bott M, Eggeling L. 2011. Corynebacterium glutamicum as a host for synthesis and export of D-amino acids. J. Bacteriol. 193: 1702-1709.   DOI
161 Stansen C, Uy D, Delaunay S, Eggeling L, Goergen JL, Wendisch VF. 2005. Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production. Appl. Environ. Microbiol. 71: 5920-5928.   DOI
162 Suzuki N, Nonaka H, Tsuge Y, Inui M, Yukawa H. 2005. New multiple-deletion method for the Corynebacterium glutamicum genome, using a mutant lox sequence. Appl. Environ. Microbiol. 71: 8472-8480.   DOI
163 Suzuki N, Nonaka H, Tsuge Y, Okayama S, Inui M, Yukawa H. 2005. Multiple large segment deletion method for Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 69: 151-161.   DOI