DOI QR코드

DOI QR Code

Biofilter Treatment of Waste Air Containing Malodor and VOC: 1. Pressure Drop and Microbe-population Distribution of Biofilter with Improved Design

악취 및 VOC를 함유한 폐가스의 바이오필터 처리: 1. 개선된 바이오필터설계에 의한 압력강하와 미생물 population 분포

  • Lee, Eun Ju (Department of Chemical Engineering, Daegu University, Research Institute for Industrial and Environmental Waste Air Treatment) ;
  • Lim, Kwang-Hee (Department of Chemical Engineering, Daegu University, Research Institute for Industrial and Environmental Waste Air Treatment)
  • 이은주 (대구대학교 화학공학과, 산업 및 환경폐가스연구소) ;
  • 임광희 (대구대학교 화학공학과, 산업 및 환경폐가스연구소)
  • Received : 2013.01.14
  • Accepted : 2013.01.21
  • Published : 2013.02.01

Abstract

In this study, both pressure drop and microbe-population-distribution were observed while running a novel biofilter system with improved design in which the biofilter system is composed of two, upper and lower biofilters with both equal feed-rates of up-flow and down-flow, respectively. Then they were compared with the pressure drop and microbe-population-distribution observed in a conventional biofilter of the same effective volume with unidirectional flow. The pressure drop-value of biofilter system with improved design turned out to be less at the incipient stage of run or steady-state long term operation by more than 40~80% of that of the conventional biofilter. The microbe-population-distribution was observed to be lower and higher at higher and lower column of biofilter, respectively, for both the conventional biofilter and the biofilter system with improved design. The microbe-media of waste-tire crumb showed much greater CFU counts than GAC. In the biofilter system with improved design, the $bottom{\rightarrow}up$ feeding of waste air showed greater microbe-population growth than the $top{\rightarrow}down$ feeding for both the microbe-media of waste-tire crumb and GAC. However, it was more prominent for the former than the latter. Comparing the microbe-population-distributions of both of the conventional biofilter and the biofilter system with improved design, the microbe-population of latter was distributed ca. 15 and 2.5 times more evenly for GAC and the media of waste-tire crumb, respectively, than that of former.

본 연구에서는 개선된 바이오필터설계를 가지는 새로운 바이오필터의 압력강하 및 미생물 population 분포 등을 관찰하고, 같은 유효부피를 갖고 unidirectional flow (UF)를 갖는 전통적 바이오필터의 경우와 비교하였다. 개선된 바이오필터는 운전 초기 또는 정상상태의 장기운전에서 전통적 바이오필터 압력강하의 약 40~80% 이상을 감소시켰다. 미생물 population 분포는 바이오필터 담체인 폐타이어담체와 입상 활성탄의 두 경우 모두 바이오필터 top 단에서 가장 낮았고 바이오필터 밑으로 내려갈수록 미생물 population이 커졌다. 한편 폐타이어담체는 입상활성탄 담체보다 월등히 큰 미생물 population을 나타내는 미생물 콜로니 개체수(CFU counts)를 보였다. 개선된 바이오필터에서 악취가스가 $bottom{\rightarrow}up$으로 공급되는 경우에 악취가스가 $top{\rightarrow}down$으로 공급되는 경우보다 미생물 population 성장이 더욱 컸으며, 입상활성탄 담체보다 폐타이어담체에서 이 현상이 더욱 두드러졌다. 전통적 바이오필터와 개선된 바이오필터시스템 각각의 미생물 population 분포도를 비교하였을 때에, 개선된 바이오필터의 미생물 population은 전통바이오필터보다 입상 활성탄 담체와 폐타이어담체의 경우에 각각 약 15배 및 2.5배 만큼 더 고르게 분포되었다.

Keywords

References

  1. Yang, C. P., Suidan, M. T., Zu, X. Q. and Kim, B. J., "Biomass Accumulation Patterns for Removing Volatile Organic Compounds in Rotating Drum Biofilters," Water Sci. Tech., 48, 89-96 (2003).
  2. Alonso, C., Suidan, M. T., Kim, B. R. and Kim, B. J., "Dynamic Mathematical Model for the Biodegradation of VOCs in a Biofilter: Biomass Accumulation Study," Environ. Sci. Technol., 2, 3118-3123(1998).
  3. Okkerse, W. J. H., Ottengraf, S. P. P., Osinga-Kuipers, B. and Okkerse, M., "Biomass Accumulation and Cogging in Biotrickling Filters for Waste Gas Treatment," Biotechnol. Bioeng., 63, 418-430(1999). https://doi.org/10.1002/(SICI)1097-0290(19990520)63:4<418::AID-BIT5>3.0.CO;2-0
  4. Smith, F. L., Sorial, G. A. Suidan, M. T., Breen, A. W. and Bismas, P., "Development of Two Biomass Control Strategies for Extended, Stable Operation of Highly Efficient Biofilters with High Toluene Loadings," Environ. Sci. Technol., 30, 1744-1751 (1996). https://doi.org/10.1021/es950743y
  5. Cox, H. H. J. and Deshusses, M. A., "Biomass Control in Waste Air Biotrickling Filters by Protozoan Predation," J. Eng. Appl. Sci., 62, 216-224(1999).
  6. Cox, H. H. J. and Deshusses, M. A., "Chemical Removal pf Biomass from Waste Air Biotrickling Filters: Screening Chemicals of Potential Interest," Water Res., 33, 2383-2391(1999). https://doi.org/10.1016/S0043-1354(98)00452-7
  7. Moe, W. M. and Irvine, R. L., "Polyurethane Sponge Medium for Biofiltration, II: Operation and Performance," J. Environ. Eng., 126, 826-832(2000). https://doi.org/10.1061/(ASCE)0733-9372(2000)126:9(826)
  8. Kenes, C. and Veiga, M. C., "Inert Filter Media for the Biofiltration of Waste Gas-characteristics and Biomass Control," Rev. Environ. Sci. Biotechnol., 1, 201-214(2002). https://doi.org/10.1023/A:1021240500817
  9. Yang, C. P., Suidan, M. T., Zu, X. Q. and Kim, B. J., "Comparison of Single-layer and Multi-layer Rotating Drum Biofilters for VOC Removal," Environ. Prog., 22, 87-94(2003). https://doi.org/10.1002/ep.670220210
  10. Dorado, A. D., Baeza, J. A., Lafuente, J., Gabriel, D. and Gamisans, X., "Biomass Accumulation in Biofilter Treating Toluene at High Loads-Part 1: Experimental Performance from Inoculation to Clogging," Chem. Eng. J., in print(2012).
  11. Song, J. and Kinney, A., "Effect of Vapor-phase Bioreactor Operation on Biomass Accumulation, Distribution, and Activity: Linking Biofilm Properties to Bioreactor Performance," Biotechnol. Bioeng., 68, 508-516(2000). https://doi.org/10.1002/(SICI)1097-0290(20000605)68:5<508::AID-BIT4>3.0.CO;2-P
  12. Wright, W. F., "Transient Response of Vapor Phase Biofilters," Chem. Eng. J., 113, 161-173(2005). https://doi.org/10.1016/j.cej.2005.04.009
  13. Znad, H. T., Katoh, K. and Kawase, Y., "High Loading Toluene Treatment in a Compost Based Biofilter Using Up-flow and Downflow Swing Operation," J. Hazard. Mater., 141, 745-752(2007). https://doi.org/10.1016/j.jhazmat.2006.07.039
  14. Xi, J., Hu, H. Y. and Qian, Y., "Effect of Operating Conditions on Long Term Performance of a Biofilter Treating Gaseous Toluene: Biomass Accumulation and Stable Run Time Estimation," Biochem. Eng. J., 31, 165-172(2006). https://doi.org/10.1016/j.bej.2006.07.002
  15. Mendoza, J. A., Prado, O. J., Veiga, C. and Kennes, C., "Hydrodynamic Behavior and Comparison of Technologies for the Removal of Excess Biomass in Gas Phase Biofilters," Water Res., 38, 404- 413(2004). https://doi.org/10.1016/j.watres.2003.09.014
  16. Hassan, A. A. and Sorial, G., "Biological Treatment of Benzene in a Controlled Trickle Bed Air Biofilter," Chemosphere, 75, 1315-1321(2009). https://doi.org/10.1016/j.chemosphere.2009.03.008
  17. Thalasso, F., Razo-Flores, E., Ancia, R., Naveau, H. P. and Nyns, E.-J., "Pressure-drops Control Strategy in a Fixed-bed Reactor," J. Hazard. Mater., 81, 115-22(2001). https://doi.org/10.1016/S0304-3894(00)00319-8
  18. Delhomenie, M. C., Bibeau, L., Gendron, J., Brzezinski, R. and Heitz, M., "A Study of Clogging in a Biofilter Treating Toluene Vapors," Chem. Eng. J., 94, 211-222(2003). https://doi.org/10.1016/S1385-8947(03)00052-4
  19. Lee, S. H., Lee, D. W. and Lee, M. G., "Removal Characteristics of Benzene in the Biofilter Packed with Scoria," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 41(6), 781-787(2003).
  20. Lim, K.-H., "The Treatment of Waste-air Containing Mixed Solvent Using a Biofilter: 2. Treatment of Waste-air Containg Ethanol and Toluene in a Biofilter," Korean J. Chem. Eng., 22(2), 228-233 (2005). https://doi.org/10.1007/BF02701489