• Title/Summary/Keyword: induction program

Search Result 309, Processing Time 0.033 seconds

Development of transgenic disease-resistance root stock for growth of watermelon.(oral)

  • S.M. Cho;Kim, J.Y.;J.E. Jung;S.J. Mun;S.J. Jung;Kim, K.S.;Kim, Y.C.;B.H. Cho
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.65.2-65
    • /
    • 2003
  • To protect the plant against several soil-borne pathogens, we are currently constructing disease-resistant transgenic root stock for the growth of cucurbitaceae vegetable plants, watermelon and gourd. We made a watermelon cDNA library from Cladosporium cucumerinum-Infected leaves for substractive hybriazation and differential screening. We isolated the several pathogen inducible cDNA clones, such as caffeoyl-CoA-methyltransferase, LAA induced protein, receptor-like kinase homolog, hydroxyproline-rich glycoprotein, catalase, calmodulin binding protein, mitochondrial ATPase beta subunit, methyl tRNA synthetase and WRKY transcription factors. We previously obtained CaMADS in pepper and galactinol synthase ( CsGolS) in cucumber that were confirmed to be related with disease-resistance. CaMADS and CsGolS2 were transformed into the inbred line 'GO701-2' gourd, the inbred line '6-2-2' watermelon and the Kong-dye watermelon by Agrobacterium tumerfaciens LBA4404. Plant growth regulators (zeatin, BAP and IAA) were used for shoot regeneration and root induction for optimal condition. Putative transgenic plants were selected in medium containing 100mg/L kanamycin and integration of the CaMADS and CsGO/S2 into the genomic DNA were demonstrated by the PCR analysis. We isolated major soil-borne pathogens, such as Monosporascus cannonballus, Didymella bryoniae, Cladosporium cuvumerinum from the cultivation area of watermelon or root stock, and successfully established artificial inoculation method for each pathogen. This work was supported by a grant from BioGreen 21 program, Rural Development Administration, Republic of Korea.

  • PDF

Induction on in vitro Plant Regeneration the Apple Rootstocks of Fire Blight Resistance by Plant Growth Regulators (생장조절제 처리에 따른 과수화상벙 저항성 사과대목의 기내 식물체 유도)

  • Young Hee Kwon;Won IL Choi;Hee Kyu Kim;Kyung Ok Kim;Ju Hyoung Kim;Yong Sup Song
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.23-23
    • /
    • 2021
  • Apple (Malus×domestica Borkh.; Rosaceae) is an important fruit crop grown mainly in temperate regions of the world. Tissue culture in vitro is a biotechnological technique that has been used to genetically improve cultivars (scions) and rootstocks. This could be important in the production of genetically uniform scions and rootstocks for commercial apple production. In nurseries, apple plants are produced by grafting scions onto rootstocks. The Cornell-Geneva (Geneva® series) breeding program has bred several dwarf rootstocks that are resistant to diseases and pests and are also cold hardy. This study was conducted to determine the optimal medium strength to improve sprouting shoot rate of apical meristem of the apple rootstocks of fire blight resistance. The apple rootstocks apical meristem at size (0.2 mm to 0.3 mm) with axillary buds were cultured on the MS(Murashige & Skoog) medium supplemented with plant growth regulators. The sprouting ratio and growth characteristics was evaluated after eight weeks in vitro culture. The highest rate of bud differentiation and shoot formation were 23.8% and 55.6%, respectively. After 6 weeks, shoots were regenerated from apical meristem, and their growth characteristics was significantly varied on the respective basal medium with different plant growth regulators. Our studies showed that the apple rootstocks the apple rootstocks of fire blight resistance plantlets could be successfully produced from apical meristem differentiated out of young twigs via organogenic regeneration.

  • PDF

CCAAT/enhancer binding protein β Induces Post-Switched B Cells to Produce Blimp1 and Differentiate into Plasma Cells

  • Geonhee Lee;Eunkyeong Jang;Jeehee Youn
    • IMMUNE NETWORK
    • /
    • v.20 no.5
    • /
    • pp.42.1-42.10
    • /
    • 2020
  • Long-lasting post-switched plasma cells (PCs) arise mainly from germinal center (GC) reactions, but little is known about the mechanism by which GC B cells differentiate into PCs. Based on our observation that the expression of the transcription factor CCAAT/enhancer binding protein β (C/EPBβ) is associated with the emergence of post-switched PCs, we enquired whether a cell-autonomous function of C/EPBβ is involved in the program for PC development. To address this, we generated C/EPBβ-deficient mice in which the Cebpb locus was specifically deleted in B cells after transcription of the Ig γ1 constant gene segment (Cγ1). In response to in vitro stimulation, B cells from these Cebpbfl/flCγ1Cre/+ mice had defects in the induction of B lymphocyte-induced maturation protein 1 (Blimp1) and the formation of IgG1+ PCs, but not in proliferation and survival. At steady state, the Cebpbfl/flCγ1Cre/+ mice had reduced serum IgG1 titers but normal IgG2c and IgM titers. Moreover, upon immunization with T-dependent Ag, the mice produced reduced levels of Ag-specific IgG1 Ab, and were defective in the production of Ag-specific IgG1 Ab-secreting cells. These results suggest that a cell-autonomous function of C/EPBβ is crucial for differentiation of post-switched GC B cells into PCs through a Blimp1-dependent pathway.

Effects of GnRH Agonist Administered to Mouse on Apoptosis in Ovary and Production of Estradiol and Progesterone (생쥐 내로 투여된 GnRH Agonist가 난소내 세포자연사와 Estradiol 및 Progesterone 합성에 미치는 영향)

  • Hong Soonjung;Yang Hyunwon;Kim Mi-Ran;Lee Chi-Hyeong;Hwang Kyung-Joo;Kwon Hyuck-Chan;Yoon Yong-Dal
    • Development and Reproduction
    • /
    • v.7 no.1
    • /
    • pp.49-56
    • /
    • 2003
  • There have been reports that administrated high-dose gonadotropin-releasing hormone-agonist(GnRH-Ag) suppresses endogenous gonadotropin production and inhibits function of ovary. In human IVF-ET program, however, GnRH-Ag is employed in large amounts during superovulation induction resulting to luteal phase defects which must be supported with progesterone. To elucidate the reason of luteal phase defects by GnRH-Ag, the aim of this study was to investigate the apoptosis changes in the ovary and the hormonal changes in the serum after GnRH-Ag and PMSG administration in adult mice in a method similar to human superovualtion induction. GnRH-Ag(10 ${\mu}$g) or saline was injected every 12h beginning 48h prior to PMSG injection until 48h at)or PMSG injection when blood sampling and ovary collection was performed. In results, the ovary weight in the GnRH-Ag only injection group was significantly lower when compared with the other two groups, PMSG only or PMSC + GnRH-Ag injection. The ratio of preantral follicles in the ovary are increased in the GnRH-Ag only group, while the ratio of antral follicles are decreased and the corpus luteum ratio is increased in the PMSG + GnRH-Ag group. The proportion of all follicles showing apoptosis in the GnRH-Ag only in.iection group was seen to be more than twice the proportion seen in the PMSC only injection group, and such increased apoptosis is decreased after addition of PMSC. The serum levels of both estradiol and progesterone were significantly lower in the CnRH-hg only group compared to those in the other two groups. When the administration of GnRH-Ag were followed by PMSG in;ection, however, estradiol concentration was completely recovered compared to the serum level of PMSG group, but not progesterone level. In conclusion the use of GnRH-Ag in human IVF-ET program may induce the apoptosis and the suppression of hormone production by ovary leading to luteal phase defects, thus adequate progesterone support seems to be necessary against them.

  • PDF

Initial Risk Assessment of Disodium Disulphite in OECD High Production Volume Chemical Program

  • Sanghwan Song;Park, Yoonho;Park, Hye-Youn;Kwon, Min-Jeoung;Koo, Hyun-Ju;Jeon, Seong-Hwan;Na, Jin-Gyun;Park, Kwangsik
    • Toxicological Research
    • /
    • v.18 no.1
    • /
    • pp.23-29
    • /
    • 2002
  • Disodium disulphite, the HPV chemical, was assigned to Korea in order to implement OECD SIDS program in 1999. It was produced about 3,200 ton/year in 1998. This report evaluates the toxic potency of disodium disulphite based on the environmental and mammalian effects as well as human exposure. Oral $LD_{50}$ in rats is 1,540 mg/kg b.w. and effects was observed to the stomach, liver and the GI track that was filled with blood. For repeated dose toxicity, the predominant effect was the induction of stomach lesion due to local irritation. The no observed adverse effect lever for local (stomach irritation) was about 217 mg/kg bw/day. There is no evidence that disodium disulphite is genotoxic in vivo. No reproductive or developmental toxicty of disodium disulphite was observed for the period up to 2 yr and over three generation. In humans, urticaria and asthma with itching, edema, rhinitis, and nasal congestion were reported. Disodium disulphite is unlikely to induce respiratory sensitization but may enhance symptom of asthma in sensitive individuals. This chemical would be mainly transported to water compartment when released to environmental compartments since it is highly water soluble (470 g/l at 20). Low K oc (2.447) indicates disodium disulphite is so mobile in soil that it may not stay in the terrestrial compartment. The chemical has been tested in a limited number of aquatic species. hem acute toxicity test to fish, 96 hr-$LC_{50}$ was > 100 mg/1. For algae, 72 hr-$XC_{50}$ was 48.1 mg/1. For daphnid, the acute toxicity value of 48 hr-$EC_{50}$ was 88.76 mg/1, and chronic value of 21day-NOEC was > 10 mg/1. Therefore, PNEC of 0.1 mg/l for the aquatic organism was obtained from the chronic value of daphnid using the assessment factor of 100. Based on these data the disodium disulphite was recommended as low priority for further post-SIDS work in OECD.

Real-Time Glutamate Release in Rat Striatum of 11-Vessel-Occlusion Ischemia Model Treated with Acupuncture (11개 혈관 차단법을 통한 중증 뇌경색 모델에서 뇌손상 측정과 침치료 효과 실시간 분석)

  • Yin, Chang-Shik;Choi, Seok-Keun;Lee, Gi-Ja;Eo, Yun-Hye;Kim, Bum-Shik;Oh, Berm-Seok;Lim, Ji-Eun;Lee, Hye-Jung;Park, Hun-Kuk
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.4
    • /
    • pp.835-840
    • /
    • 2008
  • Acupuncture has long been contended to be effective in an ischemic stroke. A real-time monitoring of glutamate, an excitotoxin in the process of ischemic neuronal damage, in the striatum is tried in a rat model of global ischemia. Global ischemia was induced by the 11 vessel occlusion method for 10 minutes, during which acupuncture stimulation on GB34 and GB39 points was executed. Glutamate release in the rat striatum was monitored 256 times per second using real-time amperometric biosensor. Real time measurement data of 10 minutes prior to the induction of ischemia served as baseline data. Data acquisition continued for 30 minutes after the initiation of reperfusion. Peak concentration of glutamate release along with incidentally measured EEG and cerebral blood flow was compared between cases with and without acupuncture stimulation. Peak concentration of glutamate lowered when acupuncture stimulation was executed. A real time monitoring system of 11 vessel-occlusion induced global ischemia model was successfully established. The effect by acupuncture on acute global ischemia was successfully observed in this real-time monitoring setting, which may be one of the neuroprotective mechanism of acupuncture.

Path Dependence in Industry-University Cooperation - In terms of Industry's Voluntary Participation (산학협력에서 경로 의존성에 대한 연구 - 산업계의 자발적 참여 관점)

  • Han, Sang-Seol;Yim, Duk-Soon
    • The Journal of Industrial Distribution & Business
    • /
    • v.9 no.3
    • /
    • pp.45-56
    • /
    • 2018
  • Purpose - The Korean university education system is facing innovation and change, including cooperation between industry and university, Therefore It is important to activate the industry-university cooperation. This paper aims to demonstrate the factors that activate industry-university cooperation, particularly about the voluntary participation induction by industry and researching in path dependency perspectives. Research design, data, and methodology - The subject of this research were companies that are aware of the industry-university cooperation program. This research hypothesis is derived from the literature of previous studies of industry-university cooperation, This study have constructs that was defined operationally with reference to previous studies, this research model design to figure out structural relationship among technology leadership of university, university specialization, local network strength, fixation of local economy, recognition of path dependence, participation by industry, performance of industry-university cooperation. From 2017 July. 1 to Sept. 31, questionnaire survey targeting company staff who is involving in industry-university cooperation. 257 questionnaire survey had conducted. 249 investigated data were used for empirical analysis except wrong data. This data were used for AMOS(structural equation) & Regression statistics to verify hypothesis which developed by researcher. Results - The results of this study are as follows. First, technology leadership of universities has a significant effect on voluntary participation by industry. University specialization has significant effect on voluntary participation by industry. Second, local network strength has significant effect on voluntary participation by industry. but fixation of local economy does not affect voluntary participation by industry. Third, recognition of path dependence has moderating effect between Independent(university, company characteristics) and dependent variables(voluntary participation by industry) When recognition level of path dependence is high, preceding factors have a significant effect on voluntary participation by industry than recognition level of path dependence is low. As a result, the degree of recognition of path dependence was shown important variables that induce voluntary participation of industry for industry-university cooperation program. Conclusions - This study suggests that voluntary participation of industry is a very important factor in the achievement of industry-university cooperation. Recognition of interdependence as well as leading factors that encourage voluntary participation of industry is also just as important. If recognition of path dependence was high, Industry's voluntary participation was high.

Osteogenic Response of Human Osteoblasts Derived from Mandible and Maxilla: A Preliminary Study (상, 하악골 유래 조골세포의 골형성 능: 일차 연구)

  • Yang, Hoon Joo;Song, Yoon Mi;Kim, Ri Youn;Oh, Ji Hye;Cho, Tae Hyung;Kim, In Sook;Hwang, Soon Jung
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.35 no.1
    • /
    • pp.31-37
    • /
    • 2013
  • Purpose: Maxilla and mandible have different patterns of cortical and trabecular bone and different bone mineral densities, even though both are components of the jaw bone. However, cellular differences between maxilla- and mandible derived osteoblasts (OBs) have rarely been studied. We hypothesize that maxilla- and mandible-derived OBs show different responses to $17{\beta}$-estradiol (E2), which is one of the critical factors for bone formation. This study compares skeletal site-specific cell responses between maxilla- and mandible-derived human OBs to E2. Methods: Maxilla- and mandible-derived OBs derived from an identical donor were separately isolated from a total of five normal healthy subjects aged 18~44 years old, cultured with a treatment of 100 nM estrogen. The responses between maxilla- and mandible-derived OBs to E2 were evaluated and compared using cell proliferation, alkaline phosphatase (ALP) activity and gene expression of osteoprotegerin (OPG), ALP, insulin-like growth factor-1 (IGF-1), and estrogen receptor ${\alpha}$ ($ER{\alpha}$). Results: E2 did not have any distinct effects on the proliferation of both types of OBs. Mandible-derived OBs exhibited higher ALP activity than maxilla-derived OBs in the non-treated condition, which was common in all tested individuals. ALP activities of both types of OBs showed a minor increasing tendency with the treatment of E2, even though there was no statistical significance in some specimens. The gene expression of OB by E2 was diverse, depending on the individuals. There was increased expression of OPG, IGF-1, or $ER{\alpha}$ gene in the part of subjects, which was more repeated in maxilla-derived OBs. In particular, OPG or ALP induction by E appeared less frequently in mandible-derived OBs. Conclusion: Current results revealed that E2 affects maxilla- and mandible-derived OBs into facilitating the osteogenic process despite individual differences. Mandible-derived OBs are less sensitive to bone-forming gene expression by E2.

Genistein-induced Growth Inhibition was Associated with Inhibition of Cyclooxygenase-2 and Telomerase Activity in Human Cancer Cells. (인체 암세포에서 genistein에 의한 cyclooxygenase-2 및 telomerase의 활성 저하)

  • Kim, Jung-Im;Kim, Seong-Yun;Seo, Min-Jeong;Lim, Hak-Seob;Lee, Young-Choon;Joo, Woo-Hong;Choi, Byung-Tae;Jeong, Yong-Kee;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.18 no.6
    • /
    • pp.884-890
    • /
    • 2008
  • Genistein, an isoflavone in soybean products, is a potential chemopreventive agent against various types of cancer. There are several studies documenting molecular alterations leading to cell cycle arrest at G2/M phase and induction of apoptosis; however, its mechanism of action and its molecular targets on the prostaglandin $E_2$ ($PGE_2$) production and telomere length regulation in human cancer remain unclear. In this study, we investigated the effect of genistein on the levels of cyclooxygenases (COXs) and telomere regulatory components of several human cancer cell lines (T24, human bladder carcinoma cells; U937, human leukemic cells; AGS, human stomach adenocarcinoma cells and SK-MEL-2, human skin melanoma cells). Genistein treatment resulted in the inhibition of cancer cell proliferation in a concentration-dependent manner. It was found that genistein treatment markedly decreased the levels of COX-2 mRNA and protein expression without significant changes in the expression of COX-1, which was correlated with a decrease in $PGE_2$ synthesis. Genistein treatment also partly inhibited the levels of human telomerase reverse transcriptase (hTERT) as well as human telomerase RNA (hTR) and telomerase-associated protein (TEP)-1, and the activity of telomerase. Taken together, these findings provide important new insights into the possible molecular mechanisms of the anti-cancer activity of genistein.

Induction of Apoptosis by Combined-treatment with Genistein and TRAIL in U937 Human Leukemia Cells (Genistein과 TRAIL의 복합처리에 의한 U937 인체 혈구암 세포의 Apoptosis 유도)

  • Choi, Yung-Hyun;Han, Min-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.9
    • /
    • pp.1201-1207
    • /
    • 2011
  • Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been proposed as a potent tool to trigger apoptosis in cancer therapy. However, as many types of cancer cells remain resistant towards TRAIL-induced cytotoxicity, several combined therapy approaches aimed to sensitize cells to TRAIL have been developed. Genistein, a natural isoflavonoid phytoestrogen, has been shown to have anticancer activity by inducing cell cycle arrest at G2M phase as well as apoptosis in various cancer cell lines. In the present study, we showed that treatment with TRAIL in combination with subtoxic concentrations of genistein sensitized U937 human leukemia cells to TRAIL-mediated apoptosis. Combined treatment with genistein and TRAIL effectively activated caspases through Bid truncation (tBid) and down-regulation of cellular caspase-8 (FLICE)-like inhibitory proteinL ($cFLIP_L$). However, the apoptotic effects of co-treatment with genistein and TRAIL were significantly inhibited by specific caspase inhibitors, which demonstrates the important role of caspases in apoptosis induced by genistein and TRAIL. Overall, our results indicate that genistein can potentiate TRAIL-induced apoptosis through down-regulation of $cFLIP_L$ and up-regulation of pro-apoptotic tBid proteins.