• Title/Summary/Keyword: induction

Search Result 12,070, Processing Time 0.037 seconds

A Study on Dynamic Characteristics of Induction Motor System (유도전동기 시스템의 동특성 연구)

  • Lee Hyoung-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.5 s.182
    • /
    • pp.128-136
    • /
    • 2006
  • To predict the noise and vibration characteristics of induction motor system, it is necessary to develop the mathematical model including all the mechanical elements such as shaft, blower, rotor, fan, bearing, case and mounting parts. Coupling effect between case-mount system and rotor- shaft system including shaft, blower, rotor, fan and bearing is examined. Impact exciting experimentation was done in order to verify vibration model of the induction motor system. From experimental results, we can appreciate that the natural frequencies of induction motor system are in good agrements with analysis.

Simulation of three-phase symmetrical squirrel cage induction motors with double rotor bars (대칭3상2중롱형유도전동기의 시뮬레이션)

  • 임달호;이은웅;장석명;구태만
    • 전기의세계
    • /
    • v.30 no.6
    • /
    • pp.366-374
    • /
    • 1981
  • In most cases, simulation of induction machines under dynamic conditions have been based on two-phase models using constant circuit parameters. Squirrel cage induction machines with double rotor bars which are made for high starting torgue have lower rotor bars of sufficient depth they cannot be accurately represented by a constant rotor resistance under all operating condition. In this paper, the circuit of three-phase symmetrical induction machines is represented in two-axis model by tensor. A method for simulating three-phase squirrel cage induction machines in a dynamic conditions is presented, and the current distribution in double rotor bars is calculated under dynamic conditions.

  • PDF

Speed control induction motor (속도제어형 유도전동기)

  • 오상세;박창엽
    • 전기의세계
    • /
    • v.17 no.1
    • /
    • pp.6-10
    • /
    • 1968
  • To control of the speed of induction Motor, a variable frequency power supply is needed. But this New type induction Motor Constitute stator and Rotor with New principle, its speed can be easily and widely Controlled by changing phase of the stator, and start at low current than rating without starter. Also, its no load current is same as shart current, and speed increase in proportion to current. On this points this induction Motor for speed control is different from induction Motor using Now.

  • PDF

On Mathematical Induction (수학적 귀납법에 관한 소고)

  • Koh, Youngmee;Ree, Sangwook
    • Journal for History of Mathematics
    • /
    • v.34 no.6
    • /
    • pp.195-204
    • /
    • 2021
  • Mathematical induction is one of the deductive methods used for proving mathematical theorems, and also used as an inductive method for investigating and discovering patterns and mathematical formula. Proper understanding of the mathematical induction provides an understanding of deductive logic and inductive logic and helps the developments of algorithm and data science including artificial intelligence. We look at the origin of mathematical induction and its usage and educational aspects.

On-load Parameter Identification of an Induction Motor Using Univariate Dynamic Encoding Algorithm for Searches

  • Kim, Jong-Wook;Kim, Nam-Gun;Choi, Seong-Chul;Kim, Sang-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.852-856
    • /
    • 2004
  • An induction motor is one of the most popular electrical apparatuses owing to its simple structure and robust construction. Parameter identification of the induction motor has long been researched either for a vector control technique or fault detection. Since vector control is a well-established technique for induction motor control, this paper concentrates on successive identification of physical parameters with on-load data for the purpose of condition monitoring and/or fault detection. For extracting six physical parameters from the on-load data in the framework of the induction motor state equation, unmeasured initial state values and profiles of load torque have to be estimated as well. However, the analytic optimization methods in general fail to estimate these auxiliary but significant parameters owing to the difficulty of obtaining their gradient information. In this paper, the univariate dynamic encoding algorithm for searches (uDEAS) newly developed is applied to the identification of whole unknown parameters in the mathematical equations of an induction motor with normal operating data. Profiles of identified parameters appear to be reasonable and therefore the proposed approach is available for fault diagnosis of induction motors by monitoring physical parameters.

  • PDF

The Stabilized Speed Control Modeling of Single-side Linear Induction Motor Considering End-effect (단부효과가 고려된 편측형 선형유도전동기의 안정속도제어 모델링)

  • Lim, Hong-Woo;Chae, Bong;Choi, Moon-Han;Lee, Kang-Yeon;Cho, Geum-Bae;Baek, Hyung-Lae
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.266-273
    • /
    • 2006
  • In difference with the rotary type electrical machinery, the single-sided linear induction motor(SLIM) that generates the direct thrust, is widely used for the operation system of electrified railroad, lope-less elevation system, conveyer system, and so on. The operational principle of single-sided linear induction motor is constructively similar to the general rotary Induction motor It Is difficult to realize the complicate linear induction motor which is applied space vector pulse width modulation(SVPWM) system, but widely used in vector motor control system or servo control system because of its high performance in current control. In this paper, we has modeled the dynamic characteristic analyzing methode, and calculated efficiently the end effect by using equivalent circuit methode in the operating linear Induction motor control system.

Callus Induction and Plant Regeneration from Mature Embryos in Oat

  • Lee, Byung-Moo;Kim, Kyung-Hee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.5
    • /
    • pp.352-355
    • /
    • 2002
  • Mature embryos of five oat genotypes were cultured to develop an efficient method of callus induction and plant regeneration. Murashige and Skoog(MS) and N6 media supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D) and kinetin were used for callus induction. Percentage of callus induction showed significant among the combinations of plant growth regulators. Callus induction showed high efficiency in medium containing 3 mg/$\ell$ of 2,4-D. The high frequency of callus induction was obtained in Gwiri37. For plant regeneration, calli induced from mature embryos were transferred onto MS and N6 media supplemented with combinations of 6-benzyladenine (BA) and naphthaleneacetic acid (NAA) for 5 weeks. Percentage of plant regeneration showed high in MS medium containing 0.2 mg/$\ell$ of NAA and 1 mg/$\ell$ of BA. The callus initiation medium affected the subsequent plant regeneration. Treatment with 3 mg/$\ell$ of 2,4-D, and 3 mg/$\ell$ of 2,4-D and 3 mg/$\ell$ of kinetin in callus induction media showed high frequency for plant regeneration. Plant regeneration frequency among the genotypes showed significant. Especially, Gwiri37 showed high regeneration frequency. Regenerated shoots were treated with 200, 350 and 500 mg/$\ell$ of indole-3-butyric acid (IBA) transferred onto half-strength MS medium without plant growth regulators. Treatment of shoots with IBA induced root formation rapidly.

Three-Dimensional Finite Element Analysis of the Induction Heating Procedure of an Injection Mold (고주파유도 급속 금형가열 과정의 3차원 유한요소해석)

  • Sohn, Dong-Hwi;Seo, Young-Soo;Park, Keun
    • Transactions of Materials Processing
    • /
    • v.19 no.3
    • /
    • pp.152-159
    • /
    • 2010
  • Rapid mold heating has been recent issue to enable the injection molding of thin-walled parts or micro/nano structures. High-frequency induction is an efficient way to heat mold surface by electromagnetic induction in a non-contact manner, and has been recently applied to the injection molding due to its capability of rapid heating and cooling of mold surface. The present study covers a three-dimensional finite element analysis to investigate heating efficiency and structural safety of the induction heating process of an injection mold. To simulate the induction heating process, an integrated simulation method is proposed by effectively connecting an electromagnetic field analysis, a transient heat transfer analysis and a thermal stress analysis. The estimated temperature changes are compared with experimental measurements for various types of induction coil, from which heating efficiency according to the coil shape is discussed. The resulting thermal stress distributions of the mold plate for various types of induction coils are also evaluated and discussed in terms of the structural safety.

Development of Core Material with High Magnetic Induction and Low Iron Loss for Middle-Frequency Applications (고자속밀도와 저손실 특성을 갖는 중주파수대 철심재료 개발 및 응용)

  • Cho, Seong-Soo;Han, Sang-Ok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.2
    • /
    • pp.190-195
    • /
    • 2009
  • Thin-gauged 3% silicon steel sheets having a highly grain-oriented texture have been developed as a core material for applications of middle-frequency (400 Hz ${\sim}$ 10 kHz) devices. The newly developed sheets with a tension coating showed an excellent reduction in iron loss at 400 Hz (iron loss at 1.0 T and 400 Hz = 4.677 W/kg, iron loss at 1.5 T and 400 Hz = 9.742 W/kg) due to high magnetic induction, $B_{10}$(measured induction at 1000 A/m), of over 1.9 T. In cases of frequencies below 400 Hz, magnetic induction, $B_{10}$, of the sample plays a major role to reduce its iron loss as excitation induction increases, whereas, in case of frequency of 1 kHz, thickness dependence becomes dominant due to a lower iron loss at relatively thinner sample. The sheets with a high magnetic induction, therefore, are favorable for high excitation induction (over 1.0 T) and low excitation frequency (below 400 Hz) applications, whereas the sheets that can reduce eddy current loss by reducing thickness or domain wall width are advantageous for low excitation induction (below 1.0 T) and high excitation frequency (around 1 kHz) applications.

Improvement of Output Characteristics and Acoustic Noise Characteristics for Single Phase Induction Motor with Concentrated Winding (집중권 방식 단상유도기의 출력 및 소음 특성 개선)

  • Chae, Myong-Gi;Cha, Hyun-Rok;Yun, Cheol-Ho;Jung, Tae-Uk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.4
    • /
    • pp.693-698
    • /
    • 2007
  • In general the distributed winding method is applied for induction motor in order to have the sinusoidal flux distribution. Recently the concentrated winding method is the interested technique so as to lower the material cost portion of copper coil. In the concentrated winding induction motor the harmonic flux and the torque deterioration by it would be occurred. To restrain ill effect of harmonic flux distribution by concentrated winding, the skew of rotor conduction bar is very important design variable. This study is focused on the optimal design of rotor bar's skew and winding turns for concentrated winding induction motor. In this study, the control method of harmonic parasitic torque in concentrated winding induction motor is proposed and validated its practicality through the experiment. As a result of this study, large skew angle which was not conventional in distributed winding was favorable in the concentrated winding induction motor. The concentrated winding induction motor which is designed per the proposed method of this study can be manufactured more cost effectively than conventional distributed winding.