• Title/Summary/Keyword: inductances

Search Result 223, Processing Time 0.025 seconds

Modeling and Current Controller Design of Integrated Charger (전기자동차용 통합충전기의 모델링 및 전류제어기 설계)

  • Heo, Geon;Park, Yongsoon
    • Proceedings of the KIPE Conference
    • /
    • 2018.11a
    • /
    • pp.42-44
    • /
    • 2018
  • An integrated charger is used for bi-directional power conversion between an electric vehicle and a power grid. The proposed integrated charger works in a way that motor windings are utilized as filter inductances for charging/discharging of batteries in addition to the original purpose of motor drives. After a mathematical model of the integrated charger based on an dual winding induction machine (DWIM) is discussed, a current control method is designed for grid connection. The effectiveness of the proposed method is examined with simulation results.

  • PDF

Sensorless Control of the Synchronous Reluctance Machine

  • Kilthau A.;Pacas J. M.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.768-772
    • /
    • 2001
  • The paper deals with the control of the synchronous reluctance machine without position sensor. A method for the computation of the transformation angle out of terminal voltages and currents is presented. The injection of test signals allows operation at zero speed. Fundamental for this control scheme is the exact modelling of the machine, where especially the saturable inductances are of central interest. The accuracy of the angle estimation method over the whole operating range including field-weakening is discussed in detail. The implementation of the angle estimation method in a rotor-oriented control scheme and practical results are demonstrated.

  • PDF

Implementation of High-Power PM Diode Switch Modules and High-Speed Switch Driver Circuits for Wibro Base Stations (와이브로 기지국 시스템을 위한 고전력 PIN 다이오드 스위치 모듈과 고속 스위치 구동회로의 구현)

  • Kim, Dong-Wook;Kim, Kyeong-Hak;Kim, Bo-Bae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.4 s.119
    • /
    • pp.364-371
    • /
    • 2007
  • In this paper, the design and implementation of high-power PIN diode switch modules and high-speed switch driver circuits are presented for Wibro base stations. To prevent isolation degradation due to parasitic inductances of conventional packaged PIN diodes and to improve power handling capabilities of the switch modules, bare diode chips are used and carefully placed in a PCB layout, which makes bonding wire inductances to be absorbed in the impedance of a transmission line. The switch module is designed and implemented to have a maximum performance while using a minimum number of the diodes. It shows an insertion loss of ${\sim}0.84\;dB$ and isolation of 80 dB or more at 2.35 GHz. The switch driver circuit is also fabricated and measured to have a switching speed of ${\sim}200\;nsec$. The power handling capability test demonstrates that the module operates normally even under a digitally modulated 70 W RF signal stress.

A Study on the Extraction of Parasitic Inductance for Multiple-level Interconnect Structures (다층배선 인터커넥트 구조의 기생 인덕턴스 추출 연구)

  • Yoon, Suk-In;Won, Tae-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.7
    • /
    • pp.16-25
    • /
    • 2002
  • This paper presents a methodology and application for extracting parasitic inductances in a multi-level interconnect semiconductor structure by a numerical technique. In order to calculate the parasitic inductances, the distrubution of electric potential and current density in the metal lines are calculated by finite element method (FEM). Thereafter, the magneto-static energy caused by the current density in metal lines was calculated. The result of simulation is compared with the result of Grover equation about analytic simple structures, and 4 bit ROM array with a dimension of $13{\times}10.25{\times}8.25{\mu}m^3$ was simulated to extract the parasitic inductnaces. In this calculation, 6,358 nodes with 31,941 tetrahedra were used in ULTRA 10 workstation. The total CPU time for the simulation was about 150 seconds, while the memory size of 20 MB was required.

Calculation of Self and Mutual Inductances in Multi-Phase Permanent Magnet Synchronous Motor (다상 영구자석 동기 전동기의 자기 및 상호 인덕턴스 계산)

  • Lee, Cheewoo
    • Journal of the Korean Magnetics Society
    • /
    • v.27 no.1
    • /
    • pp.9-17
    • /
    • 2017
  • A multi-phase electric machine has gained distinct interest due to its high reliability compared to a three-phase structure, and in this paper, self and mutual inductances in a five-phase permanent magnet synchronous machine (PMSM) are estimated by an analytical method. Recently, most of high-performance operations are implemented by field oriented control and/or direct torque control, and inductance for those controls is one of the key parameters in the voltage equation of phase windings. Winding function theory (WFT) is employed to calculate the inductance of phase windings, and it is verified that the result of the analytical method has a deviation of approximately 3 % compared to finite element analysis. Finally, in this paper, the way to obtain direct and quadrature inductance values are introduced from the analytical inductance calculated by WFT.

Near-end Cross-talk Analysis of Unshielded Twisted Pair Cable using the Transmission Line Model (전송선로 모델을 이용한 UTP 케이블의 NEXT 해석)

  • Lee, Won-Hui;Park, Wee-Sang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.2
    • /
    • pp.59-63
    • /
    • 2009
  • The UTP cable has been widely used, recently it is being developed for use in the UHF frequency band. One important characteristic of the UTP cable is NEXT. This research is to develop a pitch selection technique for an UTP cable which leads to a satisfactory NEXT. The transmission line model involving mutual inductances and capacitances between line pairs is used, and the simulation was carried out for frequencies from 1 MHz to 600 MHz. With respect to the worst margin of the NEXT for a Cat. 6 cable the simulation and measurement results show a good agreement.

  • PDF

A Novel Parameter Estimation Algorithm for Interior Permanent-Magnet Synchronous Motors (매입형 영구자석 동기전동기를 위한 새로운 전동기 상수 추정 방법)

  • Lim, Dong-Chan;Lee, Dong-Myung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.289-295
    • /
    • 2013
  • It is important to know exact values of Interior Permanent Magnet Synchronous Motors(IPMSM)' parameters such as stator resistance and inductance in order to have their high performance. This paper proposes a novel motor parameter(stator resistance, d&q axis inductance) estimation algorithm for IPMSM. The proposed estimation method utilizes back-EMF equations and model reference adaptive system(MRAS). The algorithm using back-EMF estimates d and q axis inductances in the constant torque region, and the stator resistance is estimated by using MRAS with the estimated inductance regardless of speed regions. The validity of the proposed algorithm is verified by simulations and experiments.

An Overview: Current Control Technique for Propulsion Motor for EV (전기자동차 구동용 모터를 위한 전류 제어 기술)

  • Lee, Hee-Kwang;Nam, Kwang-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.5
    • /
    • pp.388-395
    • /
    • 2016
  • Electric vehicles (EV) and hybrid EVs (HEV) are designed and manufactured by GM, Toyota, Honda, and Hyundai motors. The propulsion system design process for EV requires integrating subsystem designs into an overall system model to maximize the performance of a given propulsion architecture. Therefore, high-power density and high-torque density are important attributes required for EV applications. To improve torque and power density, propulsion motors are designed for saturation during high-torque operation. The nonlinearity associated with core saturation is modeled by incorporating the cross-coupling inductances, which also behave nonlinearly. Furthermore, in EV environments, the battery is directly connected to the DC link, and the battery changes depending on the state of charge. It will be onerous if as many optimal current commands as different $V_{dc}$ were made. This paper presents the optimal current commands in the various operating condition and the current control technique in EV environments.

The Role of a Wiring Model in Switching Cell Transients: the PiN Diode Turn-off Case

  • Jedidi, Atef;Garrab, Hatem;Morel, Herve;Besbes, Kamel
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.561-569
    • /
    • 2017
  • Power converter design requires simulation accuracy. In addition to the requirement of accurate models of power semiconductor devices, this paper highlights the role of considering a very good description of the converter circuit layout for an accurate simulation of its electrical behavior. This paper considers a simple experimental circuit including one switching cell where a MOSFET transistor controls the diode under test. The turn-off transients of the diode are captured, over which the circuit wiring has a major influence. This paper investigates the necessity for accurate modeling of the experimental test circuit wiring and the MOSFET transistor. It shows that a simple wiring inductance as the circuit wiring representation is insufficient. An adequate model and identification of the model parameters are then discussed. Results are validated through experimental and simulation results.

Electromagnetic Analysis of Transformer windings (변압기용 권선의 전자장 해석)

  • 박찬배;김우석;한송엽;최경달;주형길;홍계원
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.225-228
    • /
    • 2002
  • This paper presents electro-magnetic analysis of IMVA High T$_{c}$ Superconductivity transformer designed conceptually. A winding type of this transformer is a double pancake type, and a transformer of solenoidal winding type is selected to be compared with it. Both transformers have the same sizes and the same turns. Results of the analysis are compared with results of solenoidal winding. And, in this paper, leakage inductances are calculated too. There are a lot of methods to calculate inductance including Neumann Formula, Energy conservation and so on. In this paper, Energy conservation method are selected.d.

  • PDF