DOI QR코드

DOI QR Code

The Role of a Wiring Model in Switching Cell Transients: the PiN Diode Turn-off Case

  • Jedidi, Atef (Lab. of Microelectronics and Instrumentation, Dept. of Physics, University of Monastir) ;
  • Garrab, Hatem (Higher Institute of Applied sciences and Technology of Sousse, University of Sousse) ;
  • Morel, Herve (Ampere Laboratory, National Institute of Applied Science, University of Lyon) ;
  • Besbes, Kamel (Lab. of Microelectronics and Instrumentation, Dept. of Physics, University of Monastir)
  • Received : 2016.04.11
  • Accepted : 2016.11.19
  • Published : 2017.03.20

Abstract

Power converter design requires simulation accuracy. In addition to the requirement of accurate models of power semiconductor devices, this paper highlights the role of considering a very good description of the converter circuit layout for an accurate simulation of its electrical behavior. This paper considers a simple experimental circuit including one switching cell where a MOSFET transistor controls the diode under test. The turn-off transients of the diode are captured, over which the circuit wiring has a major influence. This paper investigates the necessity for accurate modeling of the experimental test circuit wiring and the MOSFET transistor. It shows that a simple wiring inductance as the circuit wiring representation is insufficient. An adequate model and identification of the model parameters are then discussed. Results are validated through experimental and simulation results.

Keywords

References

  1. R. Fu, A. Grekov, K. Peng, and E. Santi, "Parameter extraction procedure for a physics-based power SiC Schottky diode model," IEEE Trans. Ind. Appl., Vol. 50, No. 5, pp. 3558-3568, Sep./Oct. 2014. https://doi.org/10.1109/TIA.2014.2304617
  2. A. Jedidi, H. Garrab, H. Morel, and K. Besbes, "A novel approach to extract the Thyristor design parameters for designing of power electronic systems," IEEE Trans. Ind. Electron., Vol. 62, No. 4, pp. 2174-2183, Mar. 2015. https://doi.org/10.1109/TIE.2014.2356440
  3. A. E. Grekov, Z. Chen, R. Fu, J. L. Hudgins, H. A. Mantooth, D. C. Sheridan, J. Casady, and E. Santi, "Parameter extraction procedure for vertical SiC power JFET," IEEE Trans. Ind. Appl., Vol. 47, No. 4, pp. 1862-1871, Jul./Aug. 2011. https://doi.org/10.1109/TIA.2011.2155018
  4. R. Chibante, A Araujo, and A Carvalho, "Finite-element modeling and optimization-based parameter extraction algorithme for NPT-IGBT," IEEE Trans. Power Electron., Vol. 24, No. 5, pp. 1417-1427, May 2009. https://doi.org/10.1109/TPEL.2009.2012388
  5. G. Fu and P. Xue, "An excess carrier lifetime extraction method for physics-based IGBT models," Journal of Power Electronics, Vol. 16, No. 2, pp. 778-785, Mar. 2016. https://doi.org/10.6113/JPE.2016.16.2.778
  6. R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd ed. Berlin, Germany: Kluwer, 2001.
  7. H. Garrab, "Contribution a la modelisation electro-thermique de la cellule de commutation MOSFET-Diode," Ph.D. dissertation, INSA de Lyon, France, 2003. [online]. Available: http://theses.insalyon.fr/publication/2003ISAL0009/these.pdf
  8. A. R. Hefner and D. M. Diebolt, "An experimentally verified IGBT model implemented in the Saber circuit simulator," IEEE Trans. Power Electron., Vol. 9, No. 5, pp. 532-542, Sep. 1994. https://doi.org/10.1109/63.321038
  9. STTB506D, ultra fast high voltage diode, [Online]. Available: http://www.datasheets360.com/pdf/1742674171027641
  10. STTA812D, ultra fast high voltage diode, [Online]. Available: http://pdf.datasheetcatalog.com/datasheet/SGSThomsonMicroelectronics/mXvqsyu.pdf
  11. BYT12-P1000, Fast Recovery REctifier diodes, [Online]. Available: http://www.alldatasheet.com/datasheet-pdf/pdf/22145/STMICROELECTRONICS/BYT12P-1000.html
  12. BYT12-P600, Fast Recovery REctifier diodes, [Online]. Available: http://www.datasheetlib.com/datasheet/793269/byt12p600_sgs-thomson-microelectronics.html#datasheet
  13. Tektronics, P5100 Voltage Probe: Data Sheet, 2003. [Online]. Available: http://www.tek.com.
  14. N. Mohan, T. Undeland, and R. Robbins, Power Electronics Converters, Applications and Design, 2nd ed. New York: Wiley Interscience, 1995.
  15. L. Hernandez, A. Claudio, M. A. Rodriguez, M. Ponce, and A. Tapia, "Physical modeling of SiC power diodes with empirical approximation," Journal of Power Electronics, Vol. 11, No. 3, pp. 381-388, May 2011. https://doi.org/10.6113/JPE.2011.11.3.381
  16. DESSIS-ISE TCAD Release 10.0: User's Guide Manual, Integrated Systems Engineering, Zurich, Switzerland, 2004.
  17. H. Garrab, A. Jedidi, H. Morel, and K. Besbes, "A novel approach to accurately determine the tq parameter of thyristors," IEEE Trans. Ind. Electron., Vol. 64, No. 1, pp. 206-216, Jan. 2017. https://doi.org/10.1109/TIE.2016.2609381
  18. H. Garrab, B. Allard, H. Morel, K. Ammous, S. Ghedira, A. Ammimi, K. Besbes, and J.M Guichon, "On the extraction of PIN diode design parameters for validation of integrated power converter design," IEEE Trans. Power Electron., Vol. 20, No. 3, pp. 660-670, May 2005. https://doi.org/10.1109/TPEL.2005.846544
  19. H. Wang, G. Tang, Z. He, and J. Cao, "Power loss and junction temperature analysis in the modular multilevel converters for HVDC transmission systems," Journal of Power Electronics, Vol. 15, No. 3, pp. 685-694, May 2015. https://doi.org/10.6113/JPE.2015.15.3.685
  20. O. Muhlfeld and F. W. Fuchs, "Comprehensive optimization method for thermal properties and parasitics in power modules," in Proc. IEEE Energy Conversion Congress and Exposition., pp. 2266-2271, 2010.
  21. ANSYS Q3D Extractor, http://www.ansys.com/Products/Electronics/ANSYSQ3D-Extractor
  22. S. Safavi and J. Ekman, "A hybrid PEEC-SPICE method for time-domain simulation of mixed nonlinear circuits and electromagnetic problems," IEEE Trans. Electromagn. Compat., Vol. 56, No. 4, pp. 912-922, Aug. 2014. https://doi.org/10.1109/TEMC.2014.2300372
  23. J. M. Guichon, E. Clavel, C. Turbidi, and J. L. Gelet, "Electromagnetic modeling of a structure to test fuses," PCIM Europe, pp. 60-64, 2000.
  24. J. M. Guichon, E. Atienza, E. Clavel, J. Roudet, and V. Mazauric, "Automatic design of busbars considering electrical criteria," IEEE-PES-TD, 2001.
  25. M. Liang, T. Q. Zheng, and Y. Li, "An improved analytical model for predicting the switching performance of SiC MOSFETs," Journal of Power Electronics, Vol. 16, No. 1, pp. 374-384, Jan. 2016. https://doi.org/10.6113/JPE.2016.16.1.374
  26. T. Liu, R. Ning, T. Y. Wong, and Z. J. Shen, "Modeling and analysis of SiC MOSFET switching oscillations," IEEE J. Emerg. Sel. Topics Power Electron., Vol. 4, No. 3, pp. 747-756, Sep. 2016. https://doi.org/10.1109/JESTPE.2016.2587358
  27. K. Ammous, H. Morel, and A. Ammous, "Analysis of power switching losses accounting probe modeling," IEEE Trans. Instrum. Measurm., Vol. 59, No. 12, pp. 3218-3226, Dec. 2010. https://doi.org/10.1109/TIM.2010.2047302