• Title/Summary/Keyword: inductance variation

Search Result 144, Processing Time 0.049 seconds

Analysis of Inductance Variation Characteristics in Interior Permanent Magnet Synchronous Motor (매입형 영구자석 동기 전동기의 인덕턴스 리플 특성 분석)

  • Lee, Sang-Yub;Kwak, Sang-Yeop;Jung, Hyun-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.821-822
    • /
    • 2006
  • In the case of the interior permanent magnet synchronous motor (IPMSM), it is important to know the accurate machine parameters in the design step. In particular, d- and q- axis inductance are expected to have ripple characteristics, due to the mechanical structure and the degree of magnetic saturation. In this paper, this feature is expressed as inductance variation. Inductance variation of the IPMSM is calculated with finite element analysis, and the reason for inductance variation is identified. Finally the validity of this paper is verified by the comparison with the experimental results.

  • PDF

Study on Calculation of Mutual and Self-inductance in SRM with Full-pitched winding (Full-pitched winding SRM에서의 상호(相互) 및 자기(自己) 인덕턴스의 산정에 관한 연구)

  • Baik, Seung-Kyu;Lee, Chi-Woo;Jung, Tae-Uk;Lee, Il-Chun;Hwang, Young-Moon
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.31-33
    • /
    • 1996
  • A SRM develops its torque according to the inductance variation as the rotor position and the phase current. The variation of the inductance and the phase current plays an important role in output characteristics. Predicting and calculating the inductance is invaluable in the study of SRM. This paper suggests the estimation method of inductance as variation of phase current and rotor position considering magnetic saturation of motor core. This method is also applied to full-pitched winding SRM.

  • PDF

A Compensation Method for Mutual Inductance Variation of the Induction Motor by Using Improved Speed Estimator (개선된 속도 추정기에 의한 유도전동기 자화 인덕턴스 변동 보상법)

  • 최정수;김영석;김상욱
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.505-508
    • /
    • 1999
  • Conventional adaptive speed estimators cannot avoid the influence of the non-linear inductance variation under the saturation conditions. Without speed sensors, it is difficult to identify the inductance variation using a reactive power mode because the model contains a term of the rotor speed. In this paper, we propose a novel speed estimator having hybrid architecture in order to estimate both the rotor speed and the inductance variation simultaneously when the motor flux is saturated. Proposed estimator consists of the error between the flux obtained from the stator voltage equation and the flux estimated from the rotor flux observer. Introducing a new correction term into the estimator increases the estimation ability of the conventional speed estimator even though the motor flux is saturated. The convergence of the speed estimation error is examined by simulation Furthermore, the experimental results show the validity of the proposed method.

  • PDF

Calculation of Equivalent Inductance Variation for Position Detection of Linear Pulse Motor (리니어 펄스 모터의 위치검출을 위한 등가인덕턴스변화량 연산기법)

  • Kim, Sung-Heon;Lee, Eun-Woong;Lee, Dong-Ju;Kim, Il-Jung
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.15-17
    • /
    • 1998
  • The position of LPM's mover can be estimated by the equivalent inductance variation with the mover's displacement. Hence, in this paper, we obtained the position detection signal by the calculation of equivalent inductance variation using the winding of linear pulse motor. And the various parameters for calculation of equivalent inductance variation were obtained by the design specification and finite element analysis of linear pulse motor. With this position signal, it is possible to calculate the driving numbers of steps, to confirm the state of step out and to determine the optimal switching angle, etc.

  • PDF

Analysis of Estimated Position Error by Magnetic Saturation and Compensating Method for Sensorless Control of PMSM (자속 포화에 의한 PMSM 센서리스 위치 추정 오차 분석 및 보상 기법)

  • Park, Byung-Jun;Gu, Bon-Gwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.3
    • /
    • pp.430-438
    • /
    • 2019
  • For a pump or a compressor motor, a high periodic load torque variation is induced by the mechanical works, and it causes system vibration and noise. To minimize these problems, load torque compensation method, injecting periodic torque current, could be utilized. However, with the sensorless control method, which is usually utilized in the pump and compressor for low cost, the periodic torque current degrades the accuracy of the rotor position estimation owing to the inductance variation. This paper analyzes the rotor position and speed estimation error of sensorless control method with constant motor parameters under period loading. Assuming the constant speed by the accurate load torque compensation, the speed error equation is derived in frequency domain with inductance depending on the stator current. Further, it is also shown that the rotor position error could be minimized by compensating the inductance variation. The simulation and experimental results verify that the derived speed error model and the validity of the inductance compensation method.

EMGF Output Analysis Using Inductance Variation Model (인덕턴스 변화 모델을 이용한 EMGF 출력 분석)

  • Kim, Tae-Shin;Sung, In-Mo;Yang, Ji-Hyuk;You, Chun-Yeol;Kwon, Oh-Kyu
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.1
    • /
    • pp.5-11
    • /
    • 2009
  • The Explosive Magnetic Generator of Frequency (EMGF) has been studied as a method to generate a strong microwave effectively through converting the explosion powder energy into the electromagnetic energy. However, the generated high frequency electromagnetic wave has not been explained clearly yet, for it is known to be difficult to analyze the high frequency electromagnetic wave oscillation using a simple time-varying equivalent circuit model. In this paper, we analyze the problems of the widely used inductance model with an exponential decreasing pattern and investigate the tendency of a more accurate inductance variation model using the finite element method of EMGF inductance by considering the magnetic compression effect. And we have shown via an EMGF output simulation that the new inductance variation model proposed here has an negative effect on EMGF output.

Dynamic Analysis of a 3-Phase BLDC Motor Considering Variation of an Air-Gap (공극의 시간변화를 고려한 3 상 BLDC 모터의 동특성 해석)

  • Park, Ki-Sun;Im, Hyung-Bin;Chung, Jin-Tai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1038-1044
    • /
    • 2009
  • In this study, vibrations of an electric motor are analyzed when the motor has the interaction between mechanical and electromagnetic behaviors. For this vibration analysis a 3-phase 8-pole brushless DC motor is selected. Vibrations of the motor are influenced by coupled electromechanical characteristics. The variation of air-gap induced by vibration has an influence on the inductance of the motor coil. To analyze dynamic characteristics of the rotor, we studied inductance by the variation of an air-gap. After obtaining the kinetic, potential and magnetic energies for the motor, the equations of motion are derived by using Lagrange's equation. By applying the Newmark time integration method to the equations, the dynamic responses for the displacements and currents are computed.

Generalized State-Space Modeling of Three Phase Self-Excited Induction Generator For Dynamic Characteristics and Analysis

  • Kumar Garlapati Satish;Kishore Avinash
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.4
    • /
    • pp.482-489
    • /
    • 2006
  • This paper presents the generalized dynamic modeling of self-excited induction generator (SEIG) using state-space approach. The proposed dynamic model consists of induction generator; self-excitation capacitance and load model are expressed in stationary d-q reference frame with the actual saturation curve of the machine. An artificial neural network model is implemented to estimate the machine magnetizing inductance based on the knowledge of magnetizing current. The dynamic performance of SEIG is investigated under no load, with the load, perturbation of load, short circuit at stator terminals, and variation of prime mover speed, variation of capacitance value by considering the effect of main and cross-flux saturation. During voltage buildup the variation in magnetizing inductance is taken into consideration. The performance of SEIG system under various conditions as mentioned above is simulated using MATLAB/SIMULINK and the simulation results demonstrates the feasibility of the proposed system.

The Optimum Design of The Permanent Starting Device used in The Single-Phase SRM (단상 SRM에 사용되는 영구자석 기동장치의 최적 설계 I)

  • Kim, Jun-Ho;Lee, Eun-Woong;Lee, Jong-Han;Lee, Min-Myung;Kim, Myung-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1279-1281
    • /
    • 2005
  • Generally a single-phase SRM(switched reluctance motor) has several stator and rotor poles but these are excited by one regulated current at the same time. It has only one inductance variation. It means that the positive torque is only generated in the positive slope of the inductance variation. The single-phase SRM can not be started by itself. The single-phase SRM can be started by itself if the rotor is placed in the positive slope of the inductance variation. Then, the starting device is required to place the rotor in the starting position before start. On this paper, the equation of the force requisite for the starting device is derived using by the frictional force of the rotor

  • PDF

The Calculation of Transformer Inductance by the Finite Element Method (유한요소법에 의한 변압기 인덕턴스 계산)

  • 배진호;노채균
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.34 no.7
    • /
    • pp.267-275
    • /
    • 1985
  • The finite element method for calculating single phase transformer inductance is presented in this paper. There are three basic definitions of saturated transormer inductance. The set of nonlinear finite element equations is solved by the Newton-Raphson method which assures nearly quadratic convergence of the iteration process. The effect of perturbation of currents of this transformer is used to calculate the saturated winding inductance. This approach is used to calculate the apparent, effective and incremental inductance of single phase transformer. The apparent inductance is in good agreement with resting result. The approach enabled one to study the variation of winding inductance according to the saturation levels in the core at any operating point.

  • PDF