• Title/Summary/Keyword: induced polarization

Search Result 300, Processing Time 0.026 seconds

Resistance of Cementitious Binders to Chloride Induced Corrosion of Embedded Steel by Electrochemical and Microstructural Studies

  • Song, Ha-Won;Ann, Ki-Yong;Kim, Tae-Sang
    • Corrosion Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.74-80
    • /
    • 2009
  • The high alkaline property in the concrete pore solution protects the embedded steel in concrete from corrosion due to aggressive ions attack. However, a continuous supply of those ions, in particular, chlorides altogether with a pH fall in electrochemical reaction on the steel surface eventually depassivate the steel to corrode. To mitigate chloride-induced corrosion in concrete structures, finely grained mineral admixtures, for example, pulverized fuel ash (PFA), ground granulated blast furnace slag (GGBS) and silica fume (SF) have been often advised to replace ordinary Portland cement (OPC) partially as binder. A consistent assessment of those partial replacements has been rarely performed with respect to the resistance of each binder to corrosion, although the studies for each binder were extensively looked into in a way of measuring the corrosion rate, influence of microstructure or chemistry of chlorides ions with cement hydrations. The paper studies the behavior of steel corrosion, chloride transport, pore structure and buffering capacity of those cementitious binders. The corrosion rate of steel in mortars of OPC, 30% PFA, 60% GGBS and 10% SF respectively, with chloride in cast ranging from 0.0 to 3.0% by weight of binder was measured at 7, 28 and 150 days to determine the chloride threshold level and the rate of corrosion propagation, using the anodic polarization technique. Mercury intrusion porosimetry was also applied to cement pastes of each binder at 7 and 28 days to ensure the development of pore structure. Finally, the release rate of bound chlorides (i.e. buffering capacity) was measured at 150 days. The chloride threshold level was determined assuming that the corrosion rate is beyond 1-2 mA/$m^3$ at corrosion and the order of the level was OPC > 10% SF > 60% GGBS > 30% PFA. Mercury intrusion porosimetry showed that 10% SF paste produced the most dense pore structure, followed by 60% GGBS, 30% PFA and OPC pastes, respectively. It was found that OPC itself is beneficial in resisting to corrosion initiation, but use of pozzolanic materials as binders shows more resistance to chloride transport into concrete, thus delay the onset of corrosion.

A Similarity Weight-based Method to Detect Damage Induced by a Tsunami

  • Jeon, Hyeong-Joo;Kim, Yong-Hyun;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.4
    • /
    • pp.391-402
    • /
    • 2016
  • Among the various remote sensing sensors compared to the electro-optical sensors, SAR (Synthetic Aperture Radar) is very suitable for assessing damaged areas induced by disaster events owing to its all-weather day and night acquisition capability and sensitivity to geometric variables. The conventional CD (Change Detection) method that uses two-date data is typically used for mapping damage over extensive areas in a short time, but because data from only two dates are used, the information used in the conventional CD is limited. In this paper, we propose a novel CD method that is extended to use data consisting of two pre-disaster SAR data and one post-disaster SAR data. The proposed CD method detects changes by using a similarity weight image derived from the neighborhood information of a pixel in the data from the three dates. We conducted an experiment using three single polarization ALOS PALSAR (Advanced Land Observing Satellite/Phased Array Type L-Band) data collected over Miyagi, Japan which was seriously damaged by the 2011 east Japan tsunami. The results demonstrated that the mapping accuracy for damaged areas can be improved by about 26% with an increase of the g-mean compared to the conventional CD method. These improved results prove the performance of our proposed CD method and show that the proposed CD method is more suitable than the conventional CD method for detecting damaged areas induced by disaster.

Effect of Corrosion Atmosphere and Strain Rate on the Stress Corrosion Cracking of High Strength 7xxx Aluminum Alloy (고강도 7xxx 알루미늄 합금의 응력부식균열에 미치는 부식환경과 응력속도의 영향)

  • Yun, Yeo-Wan;Kim, Sang-Ha
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.3
    • /
    • pp.121-128
    • /
    • 2008
  • High strength 7xxx aluminum alloys have been applied to automotive bump back beam of the some limited model for light weight vehicle. The aluminum bump back beam is manufactured through extrusion, bending and welding. The residual stress given on these processes combines with the corrosive atmosphere on the road spreaded with corrosive chemicals to melt snow to occur the stress corrosion cracking. The composition of commercial 7xxx aluminum has Zn/Mg ratio about 3 and Cu over 2 wt% for better strength and stress corrosion cracking resistivity. But this composition isn't adequate for appling to the automotive bump back beam with high resistance to extrusion and bad weldability. In this study the composition of 7xxx aluminum alloy was modified to high Zn/Mg ratio and low Cu content for better extrusion and weldability. To estimate the resistivity against stress corrosion cracking of this aluminum alloy by slow strain rate test, the corrosion atmosphere and strain rate separate the stress corrosion cracking from conventional corrosion must be investigated. Using 0.6 Mol NaCl solution on slow strain rate test the stress corrosion cracking induced fracture was not observed. By adding 0.3% $H_2O_2$ and 0.6M $Na_2SO_4$ to 1M NaCl solution, the corrosion potential and current density of polarization curve moved to active potential and larger current density, and on the slow strain rate test the fracture energy in solution was lower than that in pre-exposure. These mean the stress corrosion cracking induced fracture can be estimated in this 1M NaCl + 0.3% $H_2O_2$ + 0.6M $Na_2SO_4$ solution. When the strain rate was below $2{\times}10^{-6}$, the stress corrosion cracking induced fracture start to be observed.

7,8-Dihydroxyflavone Protects High Glucose-Damaged Neuronal Cells against Oxidative Stress

  • Cho, Suk Ju;Kang, Kyoung Ah;Piao, Mei Jing;Ryu, Yea Seong;Fernando, Pincha Devage Sameera Madushan;Zhen, Ao Xuan;Hyun, Yu Jae;Ahn, Mee Jung;Kang, Hee Kyoung;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • v.27 no.1
    • /
    • pp.85-91
    • /
    • 2019
  • Oxidative stress is considered a major contributor in the pathogenesis of diabetic neuropathy and in diabetes complications, such as nephropathy and cardiovascular diseases. Diabetic neuropathy, which is the most frequent complications of diabetes, affect sensory, motor, and autonomic nerves. This study aimed to investigate whether 7,8-dihydroxyflavone (7,8-DHF) protects SH-SY5Y neuronal cells against high glucose-induced toxicity. In the current study, we found that diabetic patients exhibited higher lipid peroxidation caused by oxidative stress than healthy subjects. 7,8-DHF exhibits superoxide anion and hydroxyl radical scavenging activities. High glucose-induced toxicity severely damaged SH-SY5Y neuronal cells, causing mitochondrial depolarization; however, 7,8-DHF recovered mitochondrial polarization. Furthermore, 7,8-DHF effectively modulated the expression of pro-apoptotic protein (Bax) and anti-apoptotic protein (Bcl-2) under high glucose, thus inhibiting the activation of caspase signaling pathways. These results indicate that 7,8-DHF has antioxidant effects and protects cells from apoptotic cell death induced by high glucose. Thus, 7,8-DHF may be developed into a promising candidate for the treatment of diabetic neuropathy.

A Study on Chloride Threshold Level of Blended Cement Mortar Using Polarization Resistance Method (분극저항 측정기법을 이용한 혼합 시멘트 모르타르의 임계 염화물 농도에 대한 연구)

  • Song, Ha-Won;Lee, Chang-Hong;Lee, Kewn-Chu;Ann, Ki-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.245-253
    • /
    • 2009
  • The importance of chloride ions in the corrosion of steel in concrete has led to the concept for chloride threshold level (CTL). The CTL can be defined as the content of chlorides at the steel depth that is necessary to sustain local passive film breakdown and hence initiate the corrosion process. Despite the importance of the CTL, due to the uncertainty determining the actual limits in various environments for chloride-induced corrosion, conservative values such as 0.4% by weight of cement or 1.2 kg in 1 $m^3$ concrete have been used in predicting the corrosion-free service life of reinforced concrete structures. The paper studies the CTL for blended cement concrete by comparing the resistance of cementitious binder to the onset of chloride-induced corrosion of steel. Mortar specimens were cast with centrally located steel rebar of 10 mm in diameter using cementitious mortars with ordinary Portland cement (OPC) and mixed mortars replaced with 30% pulverized fuel ash (PFA), 60% ground granulated blast furnace slag (GGBS) and 10% silica fume (SF), respectively, at 0.4 of a free W/B ratio. Chlorides were admixed in mixing water ranging 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0, 2.5 and 3.0% by weight of binder(Based on $C1^-$). Specimens were curd 28 days at the room temperature, wrapped in polyethylene film to avoid leaching out of chloride and hydroxyl ions. Then the corrosion rate was measured using the polarization resistance method and the order of CTL for binder was determined. Thus, CTL of OPC, 60%GGBS, 30%PFA and 10%SF were determined by 1.6%, 0.45%, 0.8% and 2.15%, respectively.

The Relationship between the Mineral Characteristics and Spectral Induced Polarization for the Core Rock Samples from the Gagok Skarn Deposit (가곡 스카른 광상의 암석시료에 대한 광물특성과 광대역 유도분극 반응과의 관련성)

  • Heo, Seo-Young;Oh, Ji-Ho;Yang, Kyoung-Hee;Hwang, Jin-Yeon;Park, Sam-Gyu
    • Economic and Environmental Geology
    • /
    • v.45 no.4
    • /
    • pp.351-363
    • /
    • 2012
  • In order to develop the evaluation techniques for the potential sulfide ore reserves, the relationships between the modal vol.%, grain sizes and textural characteristics of the constituent minerals (e.g., sulfides, oxides and skarn minerals) and the Spectral Induced Polarization (SIP) phase differences are examined for the nine rock cores collected from the Gagok Pb-Zn skarn deposit. The Gagok Pb-Zn skarn deposit occurs mainly along the intrusive contact between the Cretaceous granitic rocks and Cambrian Myobong slate and Pungchon limestone. The nine rock cores have been grouped into three showing distinctive SIP phase differences: the highest (Group I), intermediate (Group II) and lowest (Group III). In relation with the modal vol.% of minerals, Group I is characterized by higher pyrrhotite (25-38 vol.%) and amphibole (40-55 vol.%); Group II by intermediate pyrrhotite (7-13 vol.%) and higher garnet (44-68 vol.%); and lower pyrrhotite (1-7 vol.%) and higher pyroxene (24-66 vol.%) stand for Group III. Furthermore, the grains of all the major constituent minerals become smaller from Group I (<5 mm) through Group II (<2.5 mm) to Group III (<1.6 mm). In particular, the pyrrhotite contents and their grain sizes show logarithmic correlation with the SIP phase differences, Although we present here the results solely from nine samples, the systematic interrelations especially for pyrrhotite indicate the potential ability of SIP measurements as a new mine-evaluation technique for the sulfide ore reservoir.

A new algorithm for SIP parameter estimation from multi-frequency IP data: preliminary results (다중 주파수 IP 자료를 이용한 SIP 변수 추정)

  • Son, Jeong-Sul;Kim, Jung-Ho;Yi, Myeong-Jong
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.60-68
    • /
    • 2007
  • Conventional analysis of spectral induced polarization (SIP) data consists of measuring impedances over a range of frequencies, followed by spectral analysis to estimate spectral parameters. For the quantitative and accurate estimation of subsurface SIP parameter distribution, however, a sophisticated and stable inversion technique is required. In this study, we have developed a two-step inversion approach to obtain the two-dimensional distribution of SIP parameters. In the first inversion step, all the SIP data measured over a range of frequencies are simultaneously inverted, adopting cross regularisation of model complex resistivities at each frequency. The cross regularisation makes it possible to enhance the noise characteristics of the inversion by imposing a strong assumption, that complex resistivities should show similar characteristics over a range of frequencies. In numerical experiments, we could verify that our inversion approach successfully reduced inversion artefacts. As a second step, we have also developed an inversion algorithm to obtain SIP parameters based on the Cole-Cole model, in which frequency-dependent complex resistivities from the first step are inverted to obtain a two-dimensional distribution of SIP parameters. In numerical tests, the SIP parameter images showed a fairly good match with the exact model, which suggests that SIP imaging can provide a very useful subsurface image to complement resistivity.

NK cell-activating receptor NKp46 does not participate in the development of obesity-induced inflammation and insulin resistance

  • Gracia Nathalie;Beatriz Dal Santo Francisco Bonamichi;Jieun Kim;Jiwon Jeong;Haneul Kang;Emirrio Reinaldie Hartland;Eveline Eveline;Jongsoon Lee
    • Molecules and Cells
    • /
    • v.47 no.3
    • /
    • pp.100007.1-100007.11
    • /
    • 2024
  • Recent evidence establishes a pivotal role for obesity-induced inflammation in precipitating insulin resistance and type-2 diabetes. Central to this process is the proinflammatory M1 adipose-tissue macrophages (ATMs) in epididymal white adipose tissue (eWAT). Notably, natural killer (NK) cells are a crucial regulator of ATMs since their cytokines induce ATM recruitment and M1 polarization. The importance of NK cells is shown by the strong increase in NK-cell numbers in eWAT, and by studies showing that removing and expanding NK cells respectively improve and worsen obesity-induced insulin resistance. It has been suggested that NK cells are activated by unknown ligands on obesity-stressed adipocytes that bind to NKp46 (encoded by Ncr1), which is an activating NK-cell receptor. This was supported by a study showing that NKp46-knockout mice have improved obesity-induced inflammation/insulin resistance. We therefore planned to use the NKp46-knockout mice to further elucidate the molecular mechanism by which NKp46 mediates eWAT NK-cell activation in obesity. We confirmed that obesity increased eWAT NKp46+ NK-cell numbers and NKp46 expression in wild-type mice and that NKp46-knockout ablated these responses. Unexpectedly, however, NKp46-knockout mice demonstrated insulin resistance similar to wild-type mice, as shown by fasting blood glucose/insulin levels and glucose/insulin tolerance tests. Obesityinduced increases in eWAT ATM numbers and proinflammatory gene expression were also similar. Thus, contrary to previously published results, NKp46 does not regulate obesity-induced insulin resistance. It is therefore unclear whether NKp46 participates in the development of obesity-induced inflammation and insulin resistance. This should be considered when elucidating the obesity-mediated molecular mechanisms that activate NK cells.

Characterization of two plasma membrane protein 3 genes (PutPMP3) from the alkali grass, Puccinellia tenuiflora, and functional comparison of the rice homologues, OsLti6a/b from rice

  • Chang-Qing, Zhang;Shunsaku, Nishiuchi;Shenkui, Liu;Tetsuo, Takano
    • BMB Reports
    • /
    • v.41 no.6
    • /
    • pp.448-454
    • /
    • 2008
  • Two full-length cDNAs, PutPMP3-1 and PutPMP3-2, encoding PMP3 family proteins were isolated from Puccinellia tenuiflora, a monocotyledonous halophyte. Expression of both genes was induced by low temperature, salt stress, dehydration, ABA, and $NaHCO_3$. Transcripts of PutPMP3-2 were more strongly induced by these stresses relative to those of PutPMP3-1, particularly under low temperature and dehydration conditions. Expression of PutPMP3-1 and PutPMP3-2 in yeast mutants lacking the PMP3 gene can functionally complement the membrane hyper-polarization and salt sensitivity phenotypes resulting from PMP3 deletion. To compare the functions of PutPMP3-1 and PutPMP3-2, the orthologous genes in rice (OsLti6a and OsLti6b) were isolated. Both OsLti6a and OsLti6b could functionally complement the loss of PMP3 in yeast. PutPMP3-2 and OsLti6a were more effective in reversing membrane hyperpolarization than PutPMP3-1 and OsLti6b. However, the four yeast transformants each showed similar levels of salt tolerance. These results imply that these PMP3 family members don't function identically under different stress tolerance conditions.

Investigation on the Effects of Hydrogen Charging on Oxidation Behavior of Ultrahigh-Strength Automotive Steels (초고강도 자동차용 강의 환원정전류인가에 따른 산화 거동 변화 연구)

  • Ha, Heon-Young;Kim, Hye-Jin;Moon, Joonoh;Lee, Tae-Ho;Jo, Hyo-Haeng;Lee, Chang-Geun;Yoo, Byung-Kil;Yang, Won-Seog
    • Corrosion Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.317-327
    • /
    • 2017
  • The change in the oxidation behavior of three types of B-added ultrahigh strength martensitic steels containing Ti and Nb induced by applying constant cathodic current was investigated. In a 3% NaCl+0.3% $NH_4SCN$ solution, the overall polarization behavior of the three alloys was similar, and degradation of the oxide film was observed in the three alloys after applying constant cathodic current. A significant increase in the anodic current density was observed in the Nb-added alloy, while it was diminished in the Ti-added alloy. Both Ti and Nb alloying decreased the hydrogen overpotential by forming NbC and TiC particles. In addition, the thickest oxide film was formed on the Ti-added alloy, but the addition of Nb decreased the film thickness. Therefore, it was concluded that the remarkable increase in the anodic current density of Nb-added alloy induced by applying constant cathodic current density was attributed to the formation of the thinnest oxide film less protective to hydrogen absorption, and the addition of Ti effectively blocked the hydrogen absorption by forming TiC particles and a relatively thick oxide film.