Browse > Article
http://dx.doi.org/10.4062/biomolther.2018.202

7,8-Dihydroxyflavone Protects High Glucose-Damaged Neuronal Cells against Oxidative Stress  

Cho, Suk Ju (Jeju National University School of Medicine and Jeju Research Center for Natural Medicine)
Kang, Kyoung Ah (Jeju National University School of Medicine and Jeju Research Center for Natural Medicine)
Piao, Mei Jing (Jeju National University School of Medicine and Jeju Research Center for Natural Medicine)
Ryu, Yea Seong (Jeju National University School of Medicine and Jeju Research Center for Natural Medicine)
Fernando, Pincha Devage Sameera Madushan (Jeju National University School of Medicine and Jeju Research Center for Natural Medicine)
Zhen, Ao Xuan (Jeju National University School of Medicine and Jeju Research Center for Natural Medicine)
Hyun, Yu Jae (Jeju National University School of Medicine and Jeju Research Center for Natural Medicine)
Ahn, Mee Jung (Laboratory of Veterinary Anatomy, College of Veterinary Medicine, Jeju National University)
Kang, Hee Kyoung (Jeju National University School of Medicine and Jeju Research Center for Natural Medicine)
Hyun, Jin Won (Jeju National University School of Medicine and Jeju Research Center for Natural Medicine)
Publication Information
Biomolecules & Therapeutics / v.27, no.1, 2019 , pp. 85-91 More about this Journal
Abstract
Oxidative stress is considered a major contributor in the pathogenesis of diabetic neuropathy and in diabetes complications, such as nephropathy and cardiovascular diseases. Diabetic neuropathy, which is the most frequent complications of diabetes, affect sensory, motor, and autonomic nerves. This study aimed to investigate whether 7,8-dihydroxyflavone (7,8-DHF) protects SH-SY5Y neuronal cells against high glucose-induced toxicity. In the current study, we found that diabetic patients exhibited higher lipid peroxidation caused by oxidative stress than healthy subjects. 7,8-DHF exhibits superoxide anion and hydroxyl radical scavenging activities. High glucose-induced toxicity severely damaged SH-SY5Y neuronal cells, causing mitochondrial depolarization; however, 7,8-DHF recovered mitochondrial polarization. Furthermore, 7,8-DHF effectively modulated the expression of pro-apoptotic protein (Bax) and anti-apoptotic protein (Bcl-2) under high glucose, thus inhibiting the activation of caspase signaling pathways. These results indicate that 7,8-DHF has antioxidant effects and protects cells from apoptotic cell death induced by high glucose. Thus, 7,8-DHF may be developed into a promising candidate for the treatment of diabetic neuropathy.
Keywords
Diabetic neuropathy; High glucose; Oxidative stress;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Suhail, M. (2010) Na, K-ATPase: ubiquitous multifunctional transmembrane protein and its relevance to various pathophysiological conditions. J. Clin. Med. Res. 2, 1-17.   DOI
2 Vincent, A. M., Brownlee, M. and Russell, J. W. (2002) Oxidative stress and programmed cell death in diabetic neuropathy. Ann. N. Y. Acad. Sci. 959, 368-383.   DOI
3 Waldmeier, P. C. and Tatton, W. G. (2004) Interrupting apoptosis in neurodegenerative disease: potential for effective therapy? Drug Discov. Today 9, 210-218.   DOI
4 Winseck, A. K. and Oppenheim, R. W. (2006) An in vivo analysis of Schwann cell programmed cell death in embryonic mice: the role of axons, glial growth factor, and the pro-apoptotic gene Bax. Eur. J. Neurosci. 24, 2105-2117.   DOI
5 Yang, Y. J., Li, Y. K., Wang, W., Wan, J. G., Yu, B., Wang, M. Z. and Hu, B. (2014) Small-molecule TrkB agonist 7,8-dihydroxyflavone reverses cognitive and synaptic plasticity deficits in a rat model of schizophrenia. Pharmacol. Biochem. Behav. 122, 30-36.   DOI
6 Anil Kumar, D., Natarajan, S., Bin Omar, N. A. M., Singh, P., Bhimani, R. and Singh, S. S. (2018) Proteomic changes in chick brain proteome post treatment with lathyrus sativus neurotoxin, ${\beta}$-N-oxalyl-L-${\alpha},{\beta}$-diaminopropionic acid (L-ODAP): a better insight to transient neurolathyrism. Toxicol. Res. 34, 267-279.   DOI
7 Brownlee, M. (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54, 1615-1625.   DOI
8 Babizhayev, M. A., Strokov, I. A., Nosikov, V. V., Savel'yeva, E. L., Sitnikov, V. F., Yegorov, Y. E. and Lankin, V. Z. (2015) The role of oxidative stress in diabetic neuropathy: generation of free radical species in the glycation reaction and gene polymorphisms encoding antioxidant enzymes to genetic susceptibility to diabetic neuropathy in population of type I diabetic patients. Cell Biochem. Biophys. 71, 1425-1443.   DOI
9 Barski, O. A., Tipparaju, S. M. and Bhatnagar, A. (2008) The aldo-keto reductase superfamily and its role in drug metabolism and detoxification. Drug Metab. Rev. 40, 553-624.   DOI
10 Berrone, E., Beltramo, E., Solimine, C., Ape, A. U. and Porta, M. (2006) Regulation of intracellular glucose and polyol pathway by thiamine and benfotiamine in vascular cells cultured in high glucose. J. Biol. Chem. 281, 9307-9313.   DOI
11 Cao, M., Jiang, J., Du, Y. and Yan, P. (2012) Mitochondria-targeted antioxidant attenuates high glucose-induced P38 MAPK pathway activation in human neuroblastoma cells. Mol. Med. Rep. 5, 929-934.   DOI
12 Dai, H., Meng, X. W. and Kaufmann, S. H. (2016) BCL2 family, mitochondrial apoptosis, and beyond. Cancer Transl. Med. 2, 7-20.   DOI
13 Cha, J. W., Piao, M. J., Kim, K. C., Yao, C. W., Zheng, J., Kim, S. M., Hyun, C. L., Ahn, Y. S. and Hyun, J. W. (2014) The polyphenol chlorogenic acid attenuates UVB-mediated oxidative stress in human HaCaT keratinocytes. Biomol. Ther. (Seoul) 22, 136-142.   DOI
14 Cheng, C. and Zochodne, D. W. (2003) Sensory neurons with activated caspase 3 survive long term experimental diabetes. Diabetes 52, 2363-2371.   DOI
15 Czabotar, P. E., Lessene, G., Strasser, A. and Adams, J. M. (2014) Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat. Rev. Mol. Cell Biol. 15, 49-63.   DOI
16 Fernandes, L. S., Dos Santos, N. A. G., Emerick, G. L. and Dos Santos, A. C. (2018) The antidiabetic drug liraglutide minimizes the non-cholinergic neurotoxicity of the pesticide mipafox in SH-SY5Y cells. Neurotox. Res. doi: 10.1007/s12640-018-9941-z [Epub ahead of print].   DOI
17 Gumy, L. F., Bampton, R. T. and Tolkovsky, A. M. (2008) Hyperglycemia inhibits Schwann cell proliferation and migration and restricts regeneration of axons and Schwann cells from adult murine DRG. Mol. Cell Neurosci. 37, 298-311.   DOI
18 Kimura, S., Inoguchi, T., Yamasaki, T., Yamato, M., Ide, M., Sonoda, N., Yamada, K. and Takayanagi, R. (2016) A novel DPP-4 inhibitor teneligliptin scavenges hydroxyl radicals: in vitro study evaluated by electron spin resonance spectroscopy and in vivo study using DPP-4 deficient rats. Metabolism 65, 138-145.   DOI
19 Hattangady, N. G. and Rajadhyaksha, M. S. (2009) A brief review of in vitro models of diabetic neuropathy. Int. J. Diabetes Dev. Ctries. 29, 143-149.   DOI
20 Kim, H., Choi, J., Lee, H., Park, J., Yoon, B. I., Jin, S. M. and Park, K. (2016) Skin corrosion and irritation test of nanoparticles using reconstructed three-dimensional human skin model, $EpiDerm^{TM}$. Toxicol. Res. 32, 311-316.   DOI
21 Lee, W. and Lee, D. G. (2018) Reactive oxygen species modulate itraconazole-induced apoptosis via mitochondrial disruption in Candida albicans. Free Radic. Res. 52,39-50.   DOI
22 Leinninger, G. M., Russell, J. W., van Golen, C. M., Berent, A. and Feldman, E. L. (2004) Insulin-like growth factor-I regulates glucose- induced mitochondrial depolarization and apoptosis in human neuroblastoma. Cell Death Differ. 11, 885-896.   DOI
23 Liu, Q., Cao, Y., Zhou, P., Gui, S., Wu, X., Xia, Y. and Tu, J. (2018) Panduratin A inhibits cell proliferation by inducing G0/G1 phase cell cycle arrest and induces apoptosis in breast cancer cells. Biomol. Ther. (Seoul) 26, 328-334.   DOI
24 Martin, L. J. (2010) Mitochondrial and cell death mechanisms in neurodegenerative diseases. Pharmaceuticals 3, 839-915.   DOI
25 Obrosova, I. G. (2009) Diabetes and the peripheral nerve. Biochim. Biophys. Acta 1792, 931-940.   DOI
26 Peng, Y., Liu, J., Shi, L., Tang, Y., Gao, D., Long, J. and Liu, J. (2016) Mitochondrial dysfunction precedes depression of AMPK/AKT signaling in insulin resistance induced by high glucose in primary cortical neurons. J. Neurochem. 137, 701-713.   DOI
27 Obrosova, I. G., Minchenko, A. G., Vasupuram, R., White, L., Abatan, O. I., Kumagai, A. K., Frank, R. N. and Stevens, M. J. (2003) Aldose reductase inhibitor fidarestat preventsretinal oxidative stress and vascular endothelial growth factor overexpression in streptozotocin-diabetic rats. Diabetes 52, 864-871.   DOI
28 Orrenius, S., Gogvadze, V. and Zhivotovsky, B. (2007) Mitochondrial oxidative stress: implications for cell death. Annu. Rev. Pharmacol. Toxicol. 47, 143-183.   DOI
29 Park, J. E., Piao, M. J., Kang, K. A., Shilnikova, K., Hyun, Y. J., Oh, S. K., Jeong, Y. J., Chae, S. and Hyun, J. W. (2017) A benzylideneacetophenone derivative induces apoptosis of radiation-resistant human breast cancer cells via oxidative stress. Biomol. Ther. (Seoul) 25, 404-410.   DOI
30 Parsaeyan, N. and Zavarreza, J. (2016) Evaluation of plasma protein oxidation biomarkers in type 2 diabetic patients with retinopathy. Iranian J. Diabetes Obesity 8, 203-207.
31 Perkins, C. L., Fang, G., Kim, C. N. and Bhalla, K. N. (2000) The role of Apaf-1, caspase-9, and bid proteins in etoposide- or paclitaxel-induced mitochondrial events during apoptosis. Cancer Res. 60, 1645-1653.
32 Rahimi-Madiseh, M., Malekpour-Tehrani, A., Bahmani, M. and Rafieian-Kopaei, M. (2016) The research and development on the antioxidants in prevention of diabetic complications. Asian Pac. J. Trop. Med. 9, 825-831.   DOI
33 Shakeel, M. (2015) Recent advances in understanding the role of oxidative stress in diabetic neuropathy. Diabetes Metab. Syndr. 9, 373-378.   DOI
34 Stevens, M. J., Obrosova, I., Cao, X., Van Huysen, C. and Greene, D. A. (2000) Effects of DL-alpha-lipoic acid on peripheral nerve conduction, blood flow, energy metabolism, and oxidative stress in experimental diabetic neuropathy. Diabetes 49, 1006-1015.   DOI