DOI QR코드

DOI QR Code

Investigation on the Effects of Hydrogen Charging on Oxidation Behavior of Ultrahigh-Strength Automotive Steels

초고강도 자동차용 강의 환원정전류인가에 따른 산화 거동 변화 연구

  • Ha, Heon-Young (Ferrous Alloy Department, Korea Institute of Materials Science) ;
  • Kim, Hye-Jin (Steel Research and Development Center, Hyundai-Steel) ;
  • Moon, Joonoh (Ferrous Alloy Department, Korea Institute of Materials Science) ;
  • Lee, Tae-Ho (Ferrous Alloy Department, Korea Institute of Materials Science) ;
  • Jo, Hyo-Haeng (Ferrous Alloy Department, Korea Institute of Materials Science) ;
  • Lee, Chang-Geun (Ferrous Alloy Department, Korea Institute of Materials Science) ;
  • Yoo, Byung-Kil (Steel Research and Development Center, Hyundai-Steel) ;
  • Yang, Won-Seog (Steel Research and Development Center, Hyundai-Steel)
  • 하헌영 (철강재료연구실, 금속재료연구본부) ;
  • 김혜진 (기술연구소, 현대제철) ;
  • 문준오 (철강재료연구실, 금속재료연구본부) ;
  • 이태호 (철강재료연구실, 금속재료연구본부) ;
  • 조효행 (철강재료연구실, 금속재료연구본부) ;
  • 이창근 (철강재료연구실, 금속재료연구본부) ;
  • 유병길 (기술연구소, 현대제철) ;
  • 양원석 (기술연구소, 현대제철)
  • Received : 2017.11.07
  • Accepted : 2017.12.07
  • Published : 2017.12.31

Abstract

The change in the oxidation behavior of three types of B-added ultrahigh strength martensitic steels containing Ti and Nb induced by applying constant cathodic current was investigated. In a 3% NaCl+0.3% $NH_4SCN$ solution, the overall polarization behavior of the three alloys was similar, and degradation of the oxide film was observed in the three alloys after applying constant cathodic current. A significant increase in the anodic current density was observed in the Nb-added alloy, while it was diminished in the Ti-added alloy. Both Ti and Nb alloying decreased the hydrogen overpotential by forming NbC and TiC particles. In addition, the thickest oxide film was formed on the Ti-added alloy, but the addition of Nb decreased the film thickness. Therefore, it was concluded that the remarkable increase in the anodic current density of Nb-added alloy induced by applying constant cathodic current density was attributed to the formation of the thinnest oxide film less protective to hydrogen absorption, and the addition of Ti effectively blocked the hydrogen absorption by forming TiC particles and a relatively thick oxide film.

Keywords

References

  1. G. Lovicu, M. Bottazzi, F. D'aiuto, M. De Sanctis, A. Dimatteo, C. Santus, and R. Valentini, Metall. Mater. Trans. A, 43, 4075 (2012). https://doi.org/10.1007/s11661-012-1280-8
  2. S. Ootsuka, S. Fujita, E. Tada, A. Nishikata, and T. Tsuru, Corros. Sci., 98, 430 (2015). https://doi.org/10.1016/j.corsci.2015.05.049
  3. J. Rehrl, K. Mraczek, A. Pichler, and E. Werner, Mater. Sci. Eng. A, 590, 360 (2014). https://doi.org/10.1016/j.msea.2013.10.044
  4. J. Venezuela, Q. Liu, M. Zhang, Q. Zhou, and A. Atrens, Corros. Sci., 99, 98 (2015). https://doi.org/10.1016/j.corsci.2015.06.038
  5. N. Winzer, O. Rott, R. Thiessen, I. Thomas, K. Mraczek, T. Hoche, L. Wright, and M. Mrovec, Mater. Design, 92, 450 (2016). https://doi.org/10.1016/j.matdes.2015.12.060
  6. R. Kuziak, R. Kawalla, and S. Waengler, Arch. Civ. Mech. Eng., 8, 103 (2008). https://doi.org/10.1016/S1644-9665(12)60197-6
  7. O. Kwon, K. Y. Lee, G. S. Kim, and K. G. Chin, Mater. Sci. Forum, 638-642, 136 (2010). https://doi.org/10.4028/www.scientific.net/MSF.638-642.136
  8. J. Venezuela, Z. Liu, M. Zhang, Q. Zhou, and A. Atrens, Corros. Rev. 34, 153 (2016).
  9. Y. Nie, Y. Kimura, T. Inoue, F. Yin, E. Akiyama, and K. Tsuzaki, Metall. Mater. Trans. A, 43A, 1670 (2012).
  10. J. H. Ryu, Y. S. Chun, C. S. Lee, H. K. D. H. Bhadeshia, and D. W. Suh, Acta Mater., 60, 4085 (2012). https://doi.org/10.1016/j.actamat.2012.04.010
  11. A. Nagao, M. L. Martin, M. Dadfarnia, P. Sofronis, and I. M. Robertson, Acta Mater., 74, 244 (2014). https://doi.org/10.1016/j.actamat.2014.04.051
  12. S. Takagi, Y. Toji, M. Yoshino, and K. Hasegawa, ISIJ Int., 52, 316 (2012). https://doi.org/10.2355/isijinternational.52.316
  13. R. -H. Song, S. -I. Pyun, and R. A. Oriani, J. Electrochem. Soc., 137, 1703 (1990). https://doi.org/10.1149/1.2086773
  14. Y. M. Zeng, J. L. Luo, and P. R. Norton, J. Electrochem. Soc., 151, B291 (2004). https://doi.org/10.1149/1.1737383
  15. J. G. Yu, J. L. Luo, and P. R. Norton, Appl. Surf. Sci., 177, 129 (2001). https://doi.org/10.1016/S0169-4332(01)00235-5
  16. J. G. Yu, C. S. Zhang, J. L. Luo, and P. R. Norton, J. Electrochem. Soc., 150, B68 (2003). https://doi.org/10.1149/1.1538226
  17. M. Z. Yang, J. L. Luo, Q. Yang, L. J. Qiao, Z. Q. Qin, and P. R. Norton, J. Electrochem. Soc., 146, 2107 (1999). https://doi.org/10.1149/1.1391899
  18. L. Q. Guo, Y. Bai, B. Z. Xu, W. Pan, J. X. Li, and L. J. Qiao, Corros. Sci., 70, 140 (2013). https://doi.org/10.1016/j.corsci.2013.01.022
  19. D. Wallinder, G. Hultquist, B. Tveten, and E. Hornlund, Corros. Sci., 43, 1267 (2001). https://doi.org/10.1016/S0010-938X(00)00154-2
  20. H. Yashiro, B. Pound, N. Kumagai, and K. Tanno, Corros. Sci. 40, 781 (1998). https://doi.org/10.1016/S0010-938X(97)00178-9
  21. S. Ningshen, U. Kamachi Mudali, G. Amarendra, P. Gopalan, R .K. Dayal, and H. S. Khatak, Corros. Sci. 48, 1106 (2006). https://doi.org/10.1016/j.corsci.2005.05.003
  22. J. Han, J. -H. Nam, and Y. -K. Lee, Acta Mater., 113, 1 (2016). https://doi.org/10.1016/j.actamat.2016.04.038
  23. S. -I. Komazaki, R. Maruyama, and T. Misawa, ISIJ Int., 43, 475 (2003). https://doi.org/10.2355/isijinternational.43.475
  24. W. -F. Chen, J. T. Muckerman, and E. Fujita, Chem. Commun., 49, 8896 (2013). https://doi.org/10.1039/c3cc44076a
  25. S. Wirth, F. Harnisch, M. Weinmann, and U. Schroder, Appl. Catal., B, 126, 225 (2012). https://doi.org/10.1016/j.apcatb.2012.07.023
  26. Y. Liu, T. G. Kelly, J. G. Chen, and W. E. Mustain, ACS Catal., 3, 1184 (2013). https://doi.org/10.1021/cs4001249
  27. C. Hubschmid, D. Landolt, and H. J. Mathieu, Fresenius J. Anal. Chem., 353, 234 (1995). https://doi.org/10.1007/BF00322043
  28. C. -G. Lee, H. -Y. Ha, T.-H. Lee, and K. -M. Cho, J. Electrochem. Soc., 164, C591 (2017). https://doi.org/10.1149/2.1591709jes