Browse > Article
http://dx.doi.org/10.14773/cst.2017.16.6.317

Investigation on the Effects of Hydrogen Charging on Oxidation Behavior of Ultrahigh-Strength Automotive Steels  

Ha, Heon-Young (Ferrous Alloy Department, Korea Institute of Materials Science)
Kim, Hye-Jin (Steel Research and Development Center, Hyundai-Steel)
Moon, Joonoh (Ferrous Alloy Department, Korea Institute of Materials Science)
Lee, Tae-Ho (Ferrous Alloy Department, Korea Institute of Materials Science)
Jo, Hyo-Haeng (Ferrous Alloy Department, Korea Institute of Materials Science)
Lee, Chang-Geun (Ferrous Alloy Department, Korea Institute of Materials Science)
Yoo, Byung-Kil (Steel Research and Development Center, Hyundai-Steel)
Yang, Won-Seog (Steel Research and Development Center, Hyundai-Steel)
Publication Information
Corrosion Science and Technology / v.16, no.6, 2017 , pp. 317-327 More about this Journal
Abstract
The change in the oxidation behavior of three types of B-added ultrahigh strength martensitic steels containing Ti and Nb induced by applying constant cathodic current was investigated. In a 3% NaCl+0.3% $NH_4SCN$ solution, the overall polarization behavior of the three alloys was similar, and degradation of the oxide film was observed in the three alloys after applying constant cathodic current. A significant increase in the anodic current density was observed in the Nb-added alloy, while it was diminished in the Ti-added alloy. Both Ti and Nb alloying decreased the hydrogen overpotential by forming NbC and TiC particles. In addition, the thickest oxide film was formed on the Ti-added alloy, but the addition of Nb decreased the film thickness. Therefore, it was concluded that the remarkable increase in the anodic current density of Nb-added alloy induced by applying constant cathodic current density was attributed to the formation of the thinnest oxide film less protective to hydrogen absorption, and the addition of Ti effectively blocked the hydrogen absorption by forming TiC particles and a relatively thick oxide film.
Keywords
ultrahigh strength martensitic steel; Nb; Ti; hydrogen overpotential; oxide layer formation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Rehrl, K. Mraczek, A. Pichler, and E. Werner, Mater. Sci. Eng. A, 590, 360 (2014).   DOI
2 J. Venezuela, Q. Liu, M. Zhang, Q. Zhou, and A. Atrens, Corros. Sci., 99, 98 (2015).   DOI
3 N. Winzer, O. Rott, R. Thiessen, I. Thomas, K. Mraczek, T. Hoche, L. Wright, and M. Mrovec, Mater. Design, 92, 450 (2016).   DOI
4 R. Kuziak, R. Kawalla, and S. Waengler, Arch. Civ. Mech. Eng., 8, 103 (2008).   DOI
5 O. Kwon, K. Y. Lee, G. S. Kim, and K. G. Chin, Mater. Sci. Forum, 638-642, 136 (2010).   DOI
6 J. Venezuela, Z. Liu, M. Zhang, Q. Zhou, and A. Atrens, Corros. Rev. 34, 153 (2016).
7 Y. Nie, Y. Kimura, T. Inoue, F. Yin, E. Akiyama, and K. Tsuzaki, Metall. Mater. Trans. A, 43A, 1670 (2012).
8 J. H. Ryu, Y. S. Chun, C. S. Lee, H. K. D. H. Bhadeshia, and D. W. Suh, Acta Mater., 60, 4085 (2012).   DOI
9 S. Takagi, Y. Toji, M. Yoshino, and K. Hasegawa, ISIJ Int., 52, 316 (2012).   DOI
10 R. -H. Song, S. -I. Pyun, and R. A. Oriani, J. Electrochem. Soc., 137, 1703 (1990).   DOI
11 Y. M. Zeng, J. L. Luo, and P. R. Norton, J. Electrochem. Soc., 151, B291 (2004).   DOI
12 J. G. Yu, J. L. Luo, and P. R. Norton, Appl. Surf. Sci., 177, 129 (2001).   DOI
13 G. Lovicu, M. Bottazzi, F. D'aiuto, M. De Sanctis, A. Dimatteo, C. Santus, and R. Valentini, Metall. Mater. Trans. A, 43, 4075 (2012).   DOI
14 S. Ootsuka, S. Fujita, E. Tada, A. Nishikata, and T. Tsuru, Corros. Sci., 98, 430 (2015).   DOI
15 J. G. Yu, C. S. Zhang, J. L. Luo, and P. R. Norton, J. Electrochem. Soc., 150, B68 (2003).   DOI
16 M. Z. Yang, J. L. Luo, Q. Yang, L. J. Qiao, Z. Q. Qin, and P. R. Norton, J. Electrochem. Soc., 146, 2107 (1999).   DOI
17 A. Nagao, M. L. Martin, M. Dadfarnia, P. Sofronis, and I. M. Robertson, Acta Mater., 74, 244 (2014).   DOI
18 L. Q. Guo, Y. Bai, B. Z. Xu, W. Pan, J. X. Li, and L. J. Qiao, Corros. Sci., 70, 140 (2013).   DOI
19 D. Wallinder, G. Hultquist, B. Tveten, and E. Hornlund, Corros. Sci., 43, 1267 (2001).   DOI
20 H. Yashiro, B. Pound, N. Kumagai, and K. Tanno, Corros. Sci. 40, 781 (1998).   DOI
21 S. Ningshen, U. Kamachi Mudali, G. Amarendra, P. Gopalan, R .K. Dayal, and H. S. Khatak, Corros. Sci. 48, 1106 (2006).   DOI
22 J. Han, J. -H. Nam, and Y. -K. Lee, Acta Mater., 113, 1 (2016).   DOI
23 S. -I. Komazaki, R. Maruyama, and T. Misawa, ISIJ Int., 43, 475 (2003).   DOI
24 W. -F. Chen, J. T. Muckerman, and E. Fujita, Chem. Commun., 49, 8896 (2013).   DOI
25 S. Wirth, F. Harnisch, M. Weinmann, and U. Schroder, Appl. Catal., B, 126, 225 (2012).   DOI
26 Y. Liu, T. G. Kelly, J. G. Chen, and W. E. Mustain, ACS Catal., 3, 1184 (2013).   DOI
27 C. Hubschmid, D. Landolt, and H. J. Mathieu, Fresenius J. Anal. Chem., 353, 234 (1995).   DOI
28 C. -G. Lee, H. -Y. Ha, T.-H. Lee, and K. -M. Cho, J. Electrochem. Soc., 164, C591 (2017).   DOI