• Title/Summary/Keyword: indoor concentration

Search Result 827, Processing Time 0.027 seconds

A Study on the Indoor Air Pollution Levels in the Classrooms at Public Schools in Suwon (수원지역 초.중.고등학교 교실의 실내 공기오염도에 관한 연구)

  • 신은상;김진우
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.1
    • /
    • pp.20-27
    • /
    • 2002
  • This study has researched the indoor air Pollution in the school classrooms. It focused on the school classrooms in which the students take part in many loaming activities for a long time, not focused on the offices or underground facilities that have occupied the interest so far. First, I investigated the origination sources of indoor air pollution which influences on our health, and researched the data on the consequences of it on the human body. Second, I measured the indoor air Pollution level of the classrooms in which the students take part in activities. I selected CO, $CO_2,{\;}SO_2,{\;}NO_2$and $PM_{10}$ as the research items. Each two schools were chosen in the elementary schools, middle schools and high schools as the ones for measurement. And I distinguished the boys' schools from the girls' schools in the middle and high schools. CO, $SO_2{\;}and{\;}NO_2$were comparatively low comparing with the recommendation of the Ministry of Environment. But, $CO_2{\;}and{\;}PM_{10}$ exceeded the standard concentration in most schools and there was a difference between boys'classrooms and girls'classrooms about them. Also, it was different by the number of members a classrooms. Third, I made a questionnaire on the on the indoor air pollution. The questionnaire showed that many students feel the indoor air pollution directly and they are under the influence of it.

The Indoor Thermal and Air Environment of General Apartment Houses during Winter in Cheongju City (청주시 아파트 일반가정의 겨울철 실내열·공기환경 현장측정조사)

  • Cho, Jun Haeng;Choi, Yoon Jung
    • KIEAE Journal
    • /
    • v.13 no.3
    • /
    • pp.111-120
    • /
    • 2013
  • The purposes of this study were to investigate the actual state of the indoor thermal and air environment in general apartment houses during winter in Cheongju City, to analyze the related factors with the indoor thermal and air environment, and to make suggestions for the improvement. A series of visiting field investigation was conducted in twenty units between 28th December, 2010, and 11th March, 2011. The field investigations included the measurement of physical indoor environmental conditions, the observation of architectural characteristics and resident's behavior, and the on-site questionnaire survey of residents. The measured values of each units were compared to evaluation standard and were categorized to group by the difference between units. Factors related to the difference of the measured values between the groups were analyzed. The findings are summarized as followed. The indoor temperature of apartment houses during winter in Cheongju City was generally suitable. The relative humidity was slightly dry, while the $CO_2$ concentration was found to be excessively high. The factors related indoor environment were analysed as heating operation, ventilation, gas range use, and hanging out the wash to dry in indoors.

Study on the Characteristics of Air quality in the Classroom of Elementary School and Its Control Methods (초등학교 교실공기질의 특징과 제어방안에 관한 연구)

  • Jeong, Ji-Won;Lee, Hee-Kwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.4
    • /
    • pp.311-322
    • /
    • 2010
  • The common life with modern urban residence, spending more than 80~90% of daily life in indoor environment, makes the importance of indoor air quality (IAQ) even higher. Many efforts have made to improve indoor air quality (IAQ), which requires those systematic approaches for field practice. A recent study reported that no general approach cannot be made for IAQ improvement due to the great deal of variety in different indoor environments. Those indoor spaces included in Korean IAQ regulation were classified based on their characteristics and the IAQ guideline was suggested for each group of indoor spaces. Apart from those indoor spaces, the classroom in elementary school has different characteristics. By introducing the systematic approaches, the elementary classroom was surveyed and analyzed to understand its characteristics in due IAQ consideration. Based on the characteristics, there are several IAQ control measures suggested, including ventilation operation, dust mat installation, and white board. $CO_2$ and airborne dust were monitored and analyzed in order to evaluate the effectiveness of each control measure to IAQ. It was found that the general level of $CO_2$ concentration was managed under the IAQ guideline by applying the ventilator operation. The ventilation was also effective to the fugitive airborne particulate in elementary classroom environment.

Development and Evaluation of a Carbon Dioxide Diffusive Sampling Method using Barium Hydroxide (수산화바륨을 이용한 이산화탄소 확산측정법의 개발 및 평가)

  • Yim, Bongbeen
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.1
    • /
    • pp.56-63
    • /
    • 2013
  • This study was aimed at developing and evaluating a diffusive sampling method using a barium hydroxide solution as an absorbent for measuring carbon dioxide ($CO_2$) in ambient air. The collected $CO_2$ concentration was calculated by the change of conductivity resulted in the reaction of $CO_3{^{2-}}$ and $Ba^{2+}$ in aqueous solution. The sampling rate for the diffusive sampler was determined 0.218 mL/min, as obtained from the slope of the linear correlation between the $CO_2$ mass collected by the diffusive sampler and the time-weighted $CO_2$ concentration with the active sampling method. The unexposed blank sampler sealed in aluminium foil-polyethylene laminated packets has remained stable during at least one-month storage period. A good correlation was observed between the diffusive sampler and active sampler with a coefficient of determination of 0.956. This diffusive sampler would be suitable for the indoor $CO_2$ concentration monitoring.

Analytic Expectation of Carbonation Depth of Indoor Concrete According to CO2 Concentration (건축물 실내 CO2 농도 분포에 따른 콘크리트 탄산화 깊이 산정에 관한 연구)

  • Park, Dong-Cheon;Park, Kun-Suok;Ahn, Jae-Cheol;Kang, Byung-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.231-233
    • /
    • 2011
  • Carbon dioxide in atmosphere causes concrete carbonation which is the phenomenon, that is, the pH of concrete changes from 12-13 to 8.85-10. Even though the carbon dioxide concentration of indoor is higher than that of outdoor, the micro measurement has not carried out. The concentration of carbon dioxide was measured in three places. The data was used as boundary condition to FEM analysis for expectation of concrete carbonation depth. The affect of building finish materials to concrete carbonation was discussed.

  • PDF

Improvement of Indoor Air Environment in a Large Welding Factory by Displacement Ventilation (변위환기를 이용한 대형 용접작업장의 공기환경 개선에 관한 연구)

  • Cho, Dong-Hwan;Kang, Seok-Youn;Choi, Choong-Hyun;Im, Yun-Chul;Lee, Jae-Heon;Moon, Jung-Hwan
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.69-74
    • /
    • 2005
  • In this paper, the indoor air environment in a large welding factory applied to displacement ventilation was investigated with experiment and numerical analysis for previous and new ventilation system. Concentration of fumes was analyzed for three cases with wind direction of outdoor. For experimental results, the dust concentration with new ventilation system decreased about 42-60% and the visibility increased about 11-18%. For numerical analysis, the exhaust efficiency of fumes was low when the wind and exhaust flow direction was inverse. It was found that the fumes in the factory decreased about 77% in case of the northern wind.

  • PDF

A study on the field measurement of the TVOC and HCHO concentration in the newly constructed apartment houses in spring seasons (입주전 신축공동주택의 봄철 TVOC, HCHO농도 실태조사에 관한 연구)

  • Choi, Seung-Hyuck;Kim, Keon-Woo;Lee, Jong-Sik;Park, Jin-Chul;Kim, Sin-Do
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.126-131
    • /
    • 2007
  • This study aims to present the fundamental strategies for improving the Indoor Air Quality(IAQ) in newly-constructed apartment buildings. To investigate the concentration of indoor air pollutants such as HCHO and VOCs and the field measurement were conducted. According to the field measurement of 60 new houses in spring season, the concentration of HCHO in about 20% were higher the IAQ standards.

  • PDF

Properties of Water-Based Paint According to the Mixing Ratio of Powdered Activated Carbon (분말활성탄 혼입률에 따른 수성도료의 특성)

  • Choi, Byung-Cheol;Kyoung, In-Soo;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.48-49
    • /
    • 2020
  • Recently, as people's interest in environmental pollution increases, interest in indoor air pollution as well as outdoors is increasing. Accordingly, this study prepares functional paints by mixing powder activated carbon, which is a porous material, into aqueous paints, and examines the adsorption performance of volatile organic compounds (VOCs) and formaldehyde (HCHO). As a result of the experiment, the concentration of volatile organic compounds (VOCs) and formaldehyde (HCHO) tended to decrease as powder activated carbon was incorporated. It is believed that physical adsorption was achieved by the micropores of powdered activated carbon. However, in the adsorption test method, it is judged that the concentration was affected by the inflow of outside air as the chamber cover was opened to put the test object in the empty chamber where a certain concentration was maintained.

  • PDF

The Concentration of Indoor Air Quality and Correlations of Materials at Multiple-use Facilities in Gwangju (광주지역 다중이용시설에서 실내공기질 농도와 상관성 분석)

  • Lee, Dae-Haeng;Lee, Se-Haeng;Bae, Seok-Jin;Kim, Nan-Hee;Park, Kang-Soo;Kim, Do-Sool;Paik, Ke-Jin;Moon, Yong-Woon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.11
    • /
    • pp.1001-1010
    • /
    • 2010
  • The purpose of this study is to investigate the concentration levels of particle materials ($PM_{10}$, asbestos), gas materials ($CO_2$, CO, $NO_2$, HCHO, Rn, VOCs) and total suspended colony (TSC), and the correlations among these materials in indoor air quality of 54 multiple-use facilities and 15 public-use facilities of Gwangju. The highest mean concentration of $PM_{10}$ was $69.2\;{\mu}g/m^3$ at indoor parking place, followed by childcare facilities, large commercial building and subway station building. The highest mean concentration of CO was 2.7 ppm at indoor parking place and that of $CO_2$ was 604.1 ppm at medical service facilities. The highest mean concentration of $NO_2$ was 0.036 ppm at indoor parking place. The geomean concentration of HCHO was $3.6\;{\mu}g/m^3$ in all facilities and the highest was $631.8\;{\mu}g/m^3$ at art gallery. The geomean concentration of VOCs (5 species) was $24.14\;{\mu}g/m^3$ in all facilities and toluene was the highest material of $15.30\;{\mu}g/m^3$, followed by xylene, ethylbenzene, benzene and styrene. The highest mean concentration of TSC was $625.3\;CFU/m^3$ at jjimjilbang, followed by childcare facilities, medical service facilities and large commercial building. The highest of asbestos was 0.0072 each/cc at childcare facilities and that of radon was 1.41 pCi/L at art gallery. PM10 showed positive correlations to TSC with $R^2\0.5332$ by lognormal equation at childcare facilities. CO2 showed positive correlations to CO at childcare facilities and indoor parking place. Lognormal equation fitted to the VOCs data more than normal equation in all facilities.

A Case Study on Distribution Characteristics of Indoor and Outdoor Particulate Matter (PM10, PM2.5) and Black Carbon (BC) by Season and Time of the Day in Apartments (아파트 실내·외 미세먼지(PM10, PM2.5)와 블랙카본(Black Carbon)의 계절별 농도 및 시간대별 분포 특성 사례연구)

  • Park, Shinyoung;Yoon, Danki;Kong, Hyegwan;Kang, Sanghyeon;Lee, Cheolmin
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.4
    • /
    • pp.339-355
    • /
    • 2021
  • Background: Particulate matter (PM10, PM2.5) and black carbon contribute to poor air quality in urban areas, and can also affect indoor environments. Exposure to PM can be associated with respiratory and lung diseases. Objectives: This study investigated the indoor and outdoor concentration distribution patterns of PM10, PM2.5, and black carbon at an apartment building, a typical residential space in the metropolitan areas of South Korea, by season, day of the week (weekday vs. weekend), and time of the day. It aims to obtain foundational data for the effective management of pollutants and investigate the difference in pollution levels between indoor and outdoor environments. Methods: Indoor and outdoor concentrations of PM and black carbon were measured at an apartment building located in Namyangju, Gyeonggi-do Province, using dust sensors and an Aethalometer AE51 (AethLabs, San Francisco, CA, USA) over the course of a year from June 2020 to May 2021. The concentration distribution patterns were analyzed by season and time of day. Results: PM10 and PM2.5 concentrations in the outdoor environment were higher than those in the indoor environment, regardless of the season. By contrast, the indoor black carbon concentration was higher than that in the outdoor environment during summer and autumn. The concentrations of PM10, PM2.5 and black carbon were found to be higher on weekdays than during weekends, especially during rush hour, with concentrations of 25.92~56.58 ㎍/m3, 21.12~44.82 ㎍/m3, 0.63~3.40 ㎍/m3. Conclusions: The outdoor concentrations of PM10, PM2.5, and black carbon were higher during the weekdays, especially during rush hour, than during weekends. This study is expected to provide basic data for the health management of apartment occupants because it is measured over a period of more than one year.