• Title/Summary/Keyword: indole-3-acetonitrile

Search Result 7, Processing Time 0.019 seconds

Chemical Constituents of Brassica campestris ssp pekinensis (배추(Brassica campestris ssp pekinensis) 지상부의 화학성분)

  • Choi, Yeon-Hee;Kim, Jung-Sook;Seo, Jee-Hee;Lee, Jung-Won;Kim, Young-Sup;Ryu, Shi-Yong;Lee, Kang-Ro;Kim, Young-Kyoon;Kim, Sung-Hoon
    • Korean Journal of Pharmacognosy
    • /
    • v.35 no.3 s.138
    • /
    • pp.255-258
    • /
    • 2004
  • Chinese cabbage (Brassica campestris ssp pekinensis) is one of the most popular green vegetables in Cruciferae family, which consisted in many Korean food. All kinds of Chinese cabbage are used both fresh and cooked with certain varieties being more suitable than others for some uses. A unique dish, Kimchi, has been developed in Korea and elsewhere by fermenting Chinese cabbage and pickling it in salt solution. Though lots of beneficial effect of Kimchi on human health has been published before, it is still debatable and in vague on the active origin of the Kimchi or of the Chinese cabbage responsible for the corresponding biological activities. We have recently conducted photochemical investigation of the Chinese cabbage, which is the main ingredient of the Korean traditional food, Kimchi. The MeOH extract of Chinese cabbage was partitioned with ethylacetate and BuOH, successively. The ethyl acetate soluble part was subjected to column chromatography with silica gel and RP-18, which gave finally five minor components, i.e., ${\beta}-sitosterol$ (1), indole-3-acetonitrile (2), 4-methoxyindole-3-acetonitrile (3), methyl ferulate (4), glycerol 1-(9,12,15-octadecatrienoate) (5). The structures of them were established on the basis of spectral $(^1H-NMR,\;^{13}C-NMR)$ evidences.

Isolation of Chemical Compounds from xBrassicoraphanus (배무채(xBrassicoraphanus)의 화학성분 분리)

  • Rhee, Yun-Hee;Ahn, Kyoo-Seok;Lee, Soo-Seong;Park, Young-Doo;Ryu, Shi-Yong;Kim, Sung-Hoon
    • Korean Journal of Pharmacognosy
    • /
    • v.38 no.4
    • /
    • pp.403-408
    • /
    • 2007
  • xBrassicoraphanus is an intergenic breed crossed between Brassica campetris L. ssp. pekinensis and Raphanus sativus L. that have been daily consumed. xBrassicoraphanus was known to have good tastes and biological activities. Nevertheless, its constituetnts were not elucidated yet. Thus, in the present study, to indirectly evaluate the biological activity of xBrassicoraphanus, 12 compounds were isolated from leaves and roots of xBrassicoraphanus. On the basis of spectroscopic evidences, the structures of these compounds isolated from leaves of xBrassicoraphanus. were identified as ${\beta}-sitosterol$, indole-3-acetonitrile, ferulic acid, methyl ferulate, linolenic acid methyl ester, linolenic acid and coniferyl alcohol, while the chemical structures of compounds isolated from the roots of were xBrassicoraphanus were characterized as ${\beta}-sitosterol$, indole-3-acetonitrile, ferulic acid, methyl ferulate, linolenic acid methyl ester, 1-methoxyindole-3-acetonitrile, goitrin, 4-hydroxycinnamyl alcohol, coniferyl alcohol, palmitic acid and daucosterol. These can be classified as three steroids, two indole cyanides, two cinnamic acid derivatives, one cinnamyl alcohol derivative, three fatty acid derivatives one isothiocyanate. These results suggest that the compounds isolated from xBrassicoraphanus were almost identical with known components of Brassica campetris L. ssp pekinensis or Raphanus sativus L. However, it is necessary to investigate more about the difference of amounts of constituents according to harvest time and variant species amounts.

Chemical Constituents from the Root of Brassica campestris ssp rapa (순무(Brassica campestris ssp rapa) 뿌리의 화학성분)

  • Kim, Jung-Sook;Choi, Yeon-Hee;Seo, Jee-Hee;Lee, Jung-Won;Kim, Young-Sup;Ryu, Shi-Yong;Kang, Jong-Seong;Kim, Young-Kyoon;Kim, Sung-Hoon
    • Korean Journal of Pharmacognosy
    • /
    • v.35 no.3 s.138
    • /
    • pp.259-263
    • /
    • 2004
  • Twelve constituents were isolated from the MeOH extract of the root of Brassica campestris L. ssp rapa. They were identified as linoleic acid methylester (1), palmitic acid (2), ${\beta}-sitosterol$ (3), 1-methoxyindole-3-acetonitrile (4), indole-3-acetonitrile (5), linolenic acid (6), goitrin (7),4-hydroxycinnamyl alcohol (8), coniferyl alcohol (9), p-coumaroylglucose (11) and feruloylglucose (12), on the basis of spectral data respectively.

Cold-Adapted and Rhizosphere-Competent Strain of Rahnella sp. with Broad-Spectrum Plant Growth-Promotion Potential

  • Vyas, Pratibha;Joshi, Robin;Sharma, K.C.;Rahi, Praveen;Gulati, Ashu;Gulati, Arvind
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.12
    • /
    • pp.1724-1734
    • /
    • 2010
  • A phosphate-solubilizing bacterial strain isolated from Hippophae rhamnoides rhizosphere was identified as Rahnella sp. based on its phenotypic features and 16S rRNA gene sequence. The bacterial strain showed the growth characteristics of a cold-adapted psychrotroph, with the multiple plant growth-promoting traits of inorganic and organic phosphate solubilization, 1-aminocyclopropane-1-carboxylate-deaminase activity, ammonia generation, and siderophore production. The strain also produced indole-3-acetic acid, indole-3-acetaldehyde, indole-3-acetamide, indole-3-acetonitrile, indole-3-lactic acid, and indole-3-pyruvic acid in tryptophan-supplemented nutrient broth. Gluconic, citric and isocitric acids were the major organic acids detected during tricalcium phosphate solubilization. A rifampicin-resistant mutant of the strain exhibited high rhizosphere competence without disturbance to the resident microbial populations in pea rhizosphere. Seed bacterization with a charcoal-based inoculum significantly increased growth in barley, chickpea, pea, and maize under the controlled environment. Microplot testing of the inoculum at two different locations in pea also showed significant increase in growth and yield. The attributes of cold-tolerance, high rhizosphere competence, and broad-spectrum plant growth-promoting activity exhibited the potential of Rahnella sp. BIHB 783 for increasing agriculture productivity.

Isolation and Identification of Bioactive Compounds from the Tuber of Brassica oleracea var. gongylodes

  • Prajapati, Ritu;Seong, Su Hui;Kim, Hyeung Rak;Jung, Hyun Ah;Choi, Jae Sue
    • Natural Product Sciences
    • /
    • v.26 no.3
    • /
    • pp.214-220
    • /
    • 2020
  • Brassica oleracea var. gongylodes (red kohlrabi) is a biennial herbaceous vegetable whose edible bulbotuber-like stem and leaves are consumed globally. Sliced red kohlrabi tubers were extracted using methanol and the concentrated extract was partitioned successively with dichloromethane (CH2Cl2), ethyl acetate (EtOAc), n-butanol (n-BuOH) and water (H2O). Repeated column chromatography of EtOAc fraction through silica, sephadex LH-20 and RP-18 gel led to isolation of eleven compounds of which compound 1 was a new glycosylated indole alkaloid derivative, 1-methoxyindole 3-carboxylic acid 6-O-β-D-glucopyranoside. Others were known compounds namely, β-sitosterol glucoside (4), 5-hydroxymethyl-2-furaldehyde (5), methyl-1-thio-β-D-glucopyranosyl disulfide (6), 5-hydroxy-2-pyridinemethanol (7), (3S,4R)-2-deoxyribonolactone (8), n-butyl-β-D-fructopyranoside (9), uridine (10) and three fructose derivatives, D-tagatose (11), β-D-fructofuranose (12) and β-D-fructopyranose (13). Similarly, isolation from CH2Cl2 fraction gave two known indole alkaloids, indole 3-acetonitrile (2) and N-methoxyindole 3-acetonitrile (3). The structure elucidation and identification of these compounds were conducted with the help of 13C and 1H NMR, HMBC, HMQC, EIMS, HR-ESIMS and IR spectroscopic data, and TLC plate spots visualization. Compounds 2, 3, 4, 5, 6, 7, 8 and 9 are noted to occur in kohlrabi for the first time. Different bioactivities of these isolated compounds have been reported in literature.

Interactions between Biosynthetic Pathway and Productivity of IAA in Some Rhizobacteria (근권에서 분리한 세균의 IAA 생합성 경로와 IAA 생성능과의 관계)

  • Kim, Woon-Jin;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.48 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • This study explores the interaction between the production of indole-3-acetic acid (IAA), a typical phytohormone auxin and the role of IAA biosynthetic pathways in each IAA producing rhizobacterial strain. The bacterial strains were isolated from rhizosphere of wild plants and identified as Acinetobacter guillouiae SW5, Bacillus thuringiensis SW17, Rhodococcus equi SW9, and Lysinibacillus fusiformis SW13. A. guillouiae SW5 exhibited the highest production of IAA using tryptophan-dependent pathways among the 4 strains. When indole-3-acetamide (IAM) was added, Rhodococcus equi SW9 showed the highest IAA production of $3824{\mu}g/mg$ protein using amidase activity. A. guillouiae SW5 also showed the highest production of IAA using two pathways with indole-3-acetonitrile (IAN), and its nitrile hydratase activity might be higher than nitrilase. B. thuringiensis SW17 showed the lowest IAA production, and most of IAA might be produced by the amidase activity, although the nitrilase activity was the highest among 4 strains. The roles of nitrile converting enzymes were relatively similar in IAA synthesis by Lysinibacillus fusiformis SW13. Tryptophan-independent pathway of IAA production was utilized by only A. guillouiae SW5.

Development of high tryptophan GM rice and its transcriptome analysis (고 함량 트립토판 생산 GM 벼 개발 및 전사체 분석)

  • Jung, Yu Jin;Nogoy, Franz Marielle;Cho, Yong-Gu;Kang, Kwon Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.42 no.3
    • /
    • pp.186-195
    • /
    • 2015
  • Anthranilate synthase (AS) is a key enzyme in the biosynthesis of tryptophan (Trp), which is the precursor of bioactive metabolites like indole-3-acetic acid and other indole alkaloids. Alpha anthranilate synthase 2 (OsASA2) plays a critical role in the feedback inhibition of tryptophan biosynthesis. In this study, two vectors with single (F124V) and double (S126F/L530D) point mutations of the OsASA2 gene for feedback-insensitive ${\alpha}$ subunit of rice anthranilate synthase were constructed and transformed into wildtype Dongjinbyeo by Agrobacterium-mediated transformation. Transgenic single and double mutant lines were selected as a single copy using TaqMan PCR utilized nos gene probe. To select intergenic lines, the flanking sequence of RB or LB was digested with a BfaI enzyme. Four intergenic lines were selected using a flanking sequence tagged (FST) analysis. Expression in rice (Oryza sativa L.) of the transgenes resulted in the accumulation of tryptophan (Trp), indole-3-acetonitrile (IAN), and indole-3-acetic acid (IAA) in leaves and tryptophan content as a free amino acid in seeds also increased up to 30 times relative to the wildtype. Two homozygous event lines, S-TG1 and D-TG1, were selected for characterization of agronomic traits and metabolite profiling of seeds. Differentially expressed genes (DEGs), related to ion transfer and nutrient supply, were upregulated and DEGs related to co-enzymes that work as functional genes were down regulated. These results suggest that two homozygous event lines may prove effective for the breeding of crops with an increased level of free tryptophan content.