1 |
Ahmad, F., Ahmad, I., and Khan, M. 2004. Indole acetic acid production by the indigenous isolates of Azotobacter and fluorescent Pseudomonas in the presence and absence of tryptophan. Turk. J. Biol. 29, 29-34.
|
2 |
Ali, B., Sabri, A., Ljung, K., and Hasnain, S. 2009. Quantification of indole-3-acetic acid from plant associated Bacillus spp. and their phytostimulatory effect on Vigna radiata (L.). World J. Microbiol. Biotechnol. 25, 519-526.
DOI
ScienceOn
|
3 |
Banerjee, A., Kaul, P., Sharma, R., and Banerjee, U. 2003. A high-throughput amenable colorimetric assay for enantioselective screening of nitrilase-producing microorganisms using pH sensitive indicators. J. Biomol. Scr. 8, 559-564.
DOI
ScienceOn
|
4 |
Bartling, D., Seedorf, M., Mithofer, A., and Weiler, E. 1992. Cloning and expression of an Arabidopsis nitrilase which can convert indole-3-acetonitlie to the plant hormone, indole-3-acetic acid. Eur. J. Biochem. 205, 417-424.
DOI
ScienceOn
|
5 |
Baxter, J. and Cummings, S.P. 2006. The current and future applications of microorganism in the bioremediation of cyanide contamination. Antonie van Leeuwenhoek 90, 1-17.
DOI
ScienceOn
|
6 |
Bui, K., Arnaud, A., and Galzy, P. 1982. A new method to prepare amide by bioconversion of corresponding nitriles. Enzyme Microb. Technol. 4, 195-197.
DOI
ScienceOn
|
7 |
Clark, E., Manulis, S., Ophir, Y., Barash, I., and Gafni, Y. 1993. Cloning and characterization of iaaM and iaaH from Erwinia herbicola pathovar gypsophilae. Phytophathol. 83, 234-240.
DOI
|
8 |
Dash, R., Gaur, A., and Balomajumder, C. 2009. Cyanide in industrial wastewaters and its removal: A review on biotreatment. J. Hazard. Mater. 163, 1-11.
DOI
ScienceOn
|
9 |
Felici, C., Vettori, L., Giraldi, E., Forino, L., Toffanin, A., Tagliasacchi, A., and Nuti, M. 2008. Single and co-inoculation of Bacillus subtilis and Azospirillum brasilense on Lycopersicon esculentum: Effects on plant growth and rhizosphere microbial community. Appl. Soil Ecol. 40, 260-270.
DOI
ScienceOn
|
10 |
Gutierrez, C., Matsui, G., Lincoln, D., and Lovell, C. 2009. Production of the phytohormone indole-3-acetic acid by estuarine species of the genus Vibrio. Appl. Environ. Microbiol. 75, 2253-2258.
DOI
ScienceOn
|
11 |
Kobayashi, M., Izui, H., Nagasawa, T., and Yamada, H. 1993. Nitrilase in biosynthesis of the plant hormone indole-3-acetic acid from indole-3-acetonitrile: Cloning of the Alcaligenes gene and site-directed mutagenesis of cysteine residues. Proc. Natl. Acad. Sci. USA 90, 247-251.
DOI
ScienceOn
|
12 |
Kobayashi, M., Suzuki, T., Fujita, T., Masuda, M., and Shimizu, S. 1995. Occurrence of enzymes involved in biosynthesis of indole-3-acetic acid from indole-3-acetonitrile in plant-associated bacteria, Agrobacterium and Rhizobium. Microbiol. 92, 714-718.
|
13 |
Meyers, P., Gokool, P., Rawlings, D., and Woods, D. 1991. An efficient cyanide-degrading Bacillus pumilus strain. J. Gen. Microbiol. 137, 1397-1400.
DOI
ScienceOn
|
14 |
Morris, R.O. 1995. Genes specifying auxin and cytokinin biosynthesis in prokaryotes, pp. 318-339. In Davies, P. (ed.) Plant hormones. Kluwer Academic, Dordrecht, The Netherlands.
|
15 |
Nagasawa, T., Mauger, J., and Yamada, H. 1990. A novel nitrilase, arylacetonitrilase, of Alcaligenes faecalis JM3 purification and characterization. Eur. J. Biochem. 194, 765-772.
DOI
ScienceOn
|
16 |
Nemec, A., Musilek, M., Sedo, O., De Baere, T., Maixnerova, M., van der Reijden, T., Zdrahal, Z., Vaneechoutte, M., and Dijkshoorn, L. 2010. Acinetobacter bereziniae sp. nov. and Acinetobacter guillouiae sp. nov., to accommodate Acinetobacter genomic species 10 and 11, respectively. Int. J. Syst. Evol. Microbiol. 60, 896-903.
DOI
ScienceOn
|
17 |
Sewell, B., Berman, M., Meyers, P., Jandhyala, D., and Benedik, M. 2003. The cyanide degrading nitrilase from Pseudomonas stutzeri AK61 is a two-fold symmetric, 14-subunit spiral. Structure 11, 1413-1422.
DOI
ScienceOn
|
18 |
Prinsen, E., Costacurta, A., Michiels, K., Vanderleyden, J., and Onckelen, H. 1993. Azospirillum brasilense indole-3-acetic acid biosynthesis: evidence for a non-tryptophan dependent pathway. Mol. Plant-Microbe Inter. 6, 609-615.
DOI
ScienceOn
|
19 |
Rapparini, F., Cohen, J., and Slovin, J. 1999. Indole-3-acetic acid biosynthesis in Lemna gibba studied using stable isotope labeled anthranilate and tryptophan. Plant Growth Regul. 27, 139-144.
DOI
ScienceOn
|
20 |
Sekine, M., Ichikawa, T., Kuga, N., and Kobayashi, M. 1988. Detection of the IAA biosynthetic pathway from tryptophan via indole-3-acetamide in Bradyrhizobium spp. Plant Cell Physiol. 29, 867-874.
|
21 |
Spaepen, S. and Vanderleyden, J. 2010. Auxin and plant-microbe interactions. Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a001438.
DOI
|
22 |
Spaepen, S., Vanderleyden, J., and Remans, R. 2007. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. 31, 425-448.
DOI
ScienceOn
|
23 |
Theunis, M., Kobayashi, H., Broughton, W., and Prinsen, E. 2004. Flavonoids, NodD1, NodD2, and nod-box NB15 modulate expression of the y4wEFG locus that is required for indole-3-acetic acid synthesis in Rhizobium sp. strain NGR234. Mol. Plant-Microbe Interact 17, 1153-1161.
DOI
ScienceOn
|
24 |
Yamamoto, K., Oishi, K., Fujimatsu, I., and Komatsu, K. 1991. Production of R-(-)-mandelic acid from mandelonitrile by Alcaligenes faecalis ATCC 8750. Appl. Environ. Microbiol. 57, 3028-3032.
|