Browse > Article
http://dx.doi.org/10.7845/kjm.2012.48.1.001

Interactions between Biosynthetic Pathway and Productivity of IAA in Some Rhizobacteria  

Kim, Woon-Jin (Department of Biological Sciences, Kangwon National University)
Song, Hong-Gyu (Department of Biological Sciences, Kangwon National University)
Publication Information
Korean Journal of Microbiology / v.48, no.1, 2012 , pp. 1-7 More about this Journal
Abstract
This study explores the interaction between the production of indole-3-acetic acid (IAA), a typical phytohormone auxin and the role of IAA biosynthetic pathways in each IAA producing rhizobacterial strain. The bacterial strains were isolated from rhizosphere of wild plants and identified as Acinetobacter guillouiae SW5, Bacillus thuringiensis SW17, Rhodococcus equi SW9, and Lysinibacillus fusiformis SW13. A. guillouiae SW5 exhibited the highest production of IAA using tryptophan-dependent pathways among the 4 strains. When indole-3-acetamide (IAM) was added, Rhodococcus equi SW9 showed the highest IAA production of $3824{\mu}g/mg$ protein using amidase activity. A. guillouiae SW5 also showed the highest production of IAA using two pathways with indole-3-acetonitrile (IAN), and its nitrile hydratase activity might be higher than nitrilase. B. thuringiensis SW17 showed the lowest IAA production, and most of IAA might be produced by the amidase activity, although the nitrilase activity was the highest among 4 strains. The roles of nitrile converting enzymes were relatively similar in IAA synthesis by Lysinibacillus fusiformis SW13. Tryptophan-independent pathway of IAA production was utilized by only A. guillouiae SW5.
Keywords
indole acetic acid; nitrilase; nitrile converting enzyme; rhizobacteria;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ahmad, F., Ahmad, I., and Khan, M. 2004. Indole acetic acid production by the indigenous isolates of Azotobacter and fluorescent Pseudomonas in the presence and absence of tryptophan. Turk. J. Biol. 29, 29-34.
2 Ali, B., Sabri, A., Ljung, K., and Hasnain, S. 2009. Quantification of indole-3-acetic acid from plant associated Bacillus spp. and their phytostimulatory effect on Vigna radiata (L.). World J. Microbiol. Biotechnol. 25, 519-526.   DOI   ScienceOn
3 Banerjee, A., Kaul, P., Sharma, R., and Banerjee, U. 2003. A high-throughput amenable colorimetric assay for enantioselective screening of nitrilase-producing microorganisms using pH sensitive indicators. J. Biomol. Scr. 8, 559-564.   DOI   ScienceOn
4 Bartling, D., Seedorf, M., Mithofer, A., and Weiler, E. 1992. Cloning and expression of an Arabidopsis nitrilase which can convert indole-3-acetonitlie to the plant hormone, indole-3-acetic acid. Eur. J. Biochem. 205, 417-424.   DOI   ScienceOn
5 Baxter, J. and Cummings, S.P. 2006. The current and future applications of microorganism in the bioremediation of cyanide contamination. Antonie van Leeuwenhoek 90, 1-17.   DOI   ScienceOn
6 Bui, K., Arnaud, A., and Galzy, P. 1982. A new method to prepare amide by bioconversion of corresponding nitriles. Enzyme Microb. Technol. 4, 195-197.   DOI   ScienceOn
7 Clark, E., Manulis, S., Ophir, Y., Barash, I., and Gafni, Y. 1993. Cloning and characterization of iaaM and iaaH from Erwinia herbicola pathovar gypsophilae. Phytophathol. 83, 234-240.   DOI
8 Dash, R., Gaur, A., and Balomajumder, C. 2009. Cyanide in industrial wastewaters and its removal: A review on biotreatment. J. Hazard. Mater. 163, 1-11.   DOI   ScienceOn
9 Felici, C., Vettori, L., Giraldi, E., Forino, L., Toffanin, A., Tagliasacchi, A., and Nuti, M. 2008. Single and co-inoculation of Bacillus subtilis and Azospirillum brasilense on Lycopersicon esculentum: Effects on plant growth and rhizosphere microbial community. Appl. Soil Ecol. 40, 260-270.   DOI   ScienceOn
10 Gutierrez, C., Matsui, G., Lincoln, D., and Lovell, C. 2009. Production of the phytohormone indole-3-acetic acid by estuarine species of the genus Vibrio. Appl. Environ. Microbiol. 75, 2253-2258.   DOI   ScienceOn
11 Kobayashi, M., Izui, H., Nagasawa, T., and Yamada, H. 1993. Nitrilase in biosynthesis of the plant hormone indole-3-acetic acid from indole-3-acetonitrile: Cloning of the Alcaligenes gene and site-directed mutagenesis of cysteine residues. Proc. Natl. Acad. Sci. USA 90, 247-251.   DOI   ScienceOn
12 Kobayashi, M., Suzuki, T., Fujita, T., Masuda, M., and Shimizu, S. 1995. Occurrence of enzymes involved in biosynthesis of indole-3-acetic acid from indole-3-acetonitrile in plant-associated bacteria, Agrobacterium and Rhizobium. Microbiol. 92, 714-718.
13 Meyers, P., Gokool, P., Rawlings, D., and Woods, D. 1991. An efficient cyanide-degrading Bacillus pumilus strain. J. Gen. Microbiol. 137, 1397-1400.   DOI   ScienceOn
14 Morris, R.O. 1995. Genes specifying auxin and cytokinin biosynthesis in prokaryotes, pp. 318-339. In Davies, P. (ed.) Plant hormones. Kluwer Academic, Dordrecht, The Netherlands.
15 Nagasawa, T., Mauger, J., and Yamada, H. 1990. A novel nitrilase, arylacetonitrilase, of Alcaligenes faecalis JM3 purification and characterization. Eur. J. Biochem. 194, 765-772.   DOI   ScienceOn
16 Nemec, A., Musilek, M., Sedo, O., De Baere, T., Maixnerova, M., van der Reijden, T., Zdrahal, Z., Vaneechoutte, M., and Dijkshoorn, L. 2010. Acinetobacter bereziniae sp. nov. and Acinetobacter guillouiae sp. nov., to accommodate Acinetobacter genomic species 10 and 11, respectively. Int. J. Syst. Evol. Microbiol. 60, 896-903.   DOI   ScienceOn
17 Sewell, B., Berman, M., Meyers, P., Jandhyala, D., and Benedik, M. 2003. The cyanide degrading nitrilase from Pseudomonas stutzeri AK61 is a two-fold symmetric, 14-subunit spiral. Structure 11, 1413-1422.   DOI   ScienceOn
18 Prinsen, E., Costacurta, A., Michiels, K., Vanderleyden, J., and Onckelen, H. 1993. Azospirillum brasilense indole-3-acetic acid biosynthesis: evidence for a non-tryptophan dependent pathway. Mol. Plant-Microbe Inter. 6, 609-615.   DOI   ScienceOn
19 Rapparini, F., Cohen, J., and Slovin, J. 1999. Indole-3-acetic acid biosynthesis in Lemna gibba studied using stable isotope labeled anthranilate and tryptophan. Plant Growth Regul. 27, 139-144.   DOI   ScienceOn
20 Sekine, M., Ichikawa, T., Kuga, N., and Kobayashi, M. 1988. Detection of the IAA biosynthetic pathway from tryptophan via indole-3-acetamide in Bradyrhizobium spp. Plant Cell Physiol. 29, 867-874.
21 Spaepen, S. and Vanderleyden, J. 2010. Auxin and plant-microbe interactions. Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a001438.   DOI
22 Spaepen, S., Vanderleyden, J., and Remans, R. 2007. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. 31, 425-448.   DOI   ScienceOn
23 Theunis, M., Kobayashi, H., Broughton, W., and Prinsen, E. 2004. Flavonoids, NodD1, NodD2, and nod-box NB15 modulate expression of the y4wEFG locus that is required for indole-3-acetic acid synthesis in Rhizobium sp. strain NGR234. Mol. Plant-Microbe Interact 17, 1153-1161.   DOI   ScienceOn
24 Yamamoto, K., Oishi, K., Fujimatsu, I., and Komatsu, K. 1991. Production of R-(-)-mandelic acid from mandelonitrile by Alcaligenes faecalis ATCC 8750. Appl. Environ. Microbiol. 57, 3028-3032.