• Title/Summary/Keyword: indium

Search Result 1,606, Processing Time 0.026 seconds

Efficient Synthetic Method of Z-Selective 2-Halo-1,3-dienes from Reactions of Allenols Possessing Ethoxycarbonyl and Vinyl Group with Indium Trihalide

  • Eom, Da-Han;Kim, Sung-Hong;Lee, Phil-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.3
    • /
    • pp.645-649
    • /
    • 2010
  • An efficient synthetic method of Z-selective 3-ethoxycarbonyl-2-halo-1,3-dienes and 3-vinyl-2-halo-1,3-dienes was developed from the reaction of allenols having ethoxycarbonyl and vinyl group with indium trihalides at room temperature in $CH_2Cl_2$.

Fabrication and Characteristics of Indium Tin Oxide Films on CR39 Substrate for OTFT

  • Kwon, Sung-Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.5
    • /
    • pp.267-270
    • /
    • 2006
  • The Indium tin oxide (ITO) films were deposited on CR39 substrate using DC magnetron sputtering. ITO thin films deposited at room temperature because CR39 substrates its glass-transition temperature of is $130^{\circ}C$. ITO thin films used bottom and top electrode and for organic thin film transparent transistor.(OTFT) ITO thin film electrodes electrical properties and optical transparency properties in the visible wavelength range (300 - 800 nm) strongly dependent on volume of oxygen percent. For the optimum resistivity and transparency of ITO thin film electrode achieved with a 75 W plasma power, 10 % volume of oxygen and a 27 nm/min deposition rate. Above 85 % transparency in the visible wavelength range (300 - 800 nm) measured without post annealing process and $9.83{times}10{-4}{\Omega}cm$ a low resistivity was measured thickness of 300 nm.

Characteristics of Indium-Tin-Oxide Electrode for Continuous-flow PCR Chip (연속흐름 중합효소연쇄반응칩 제작을 위한 인듐 산화막 전극의 특성분석)

  • Joung, Seung-Ryong;Kim, Jun-Hyeok;Yi, In-Je;Kang, C.J.;Kim, Yong-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.3
    • /
    • pp.561-565
    • /
    • 2007
  • We propose glass and PDMS (polydimethylsiloxane) chips for DNA amplification with continuous-flow PCR (polymerase chain reaction). The PDMS microchannel was fabricated using a negative molding method for sample injection. Three heaters and sensors of ITO (indium-tin-oxide) thin films were fabricated on glass chip. ITO heaters and sensors were calibrated accurately for the temperature control of the liquid flow. ITO heater generated stable heat versus applied power. ITO sensor resistance was changed linearly versus temperature increase as a RTD (resistance temperature detector) sensor. As a result, we enable precision temperature control of continuous-flow PCR chip. Using the continuous-flow PCR chip DNA plasmid pKS-GFP 720 bp was successfully amplified.

Preparation of Nano-sized Indium Tin Oxide (ITO) Powders and Their Sintering Behavior

  • Lee In-Gyu;Heo Seung-Moo
    • Journal of Powder Materials
    • /
    • v.11 no.6 s.47
    • /
    • pp.467-471
    • /
    • 2004
  • In order to fabricate a high density sintered body of ITO, nano-sized ITO powders were synthesized by coprecipitation methods. Aqueous solutions of indium and tin salts were mixed and coprecipitated by changing their pH. Coprecipitated ITO powders possessed 20-30 nm crystallite size and a relatively high BET value ($35m^2/g$), however, aggregation of particles were occurred. Therefore, a novel recrystallization technique was applied in order to eliminate the aggregates. The recrystallized ITO material consists of a little bit larger needlelike crystals, $20nm{\times}80nm$, and it possesses a higher BET value $(57m^{2}/g)$ compared to the plain coprecipitated material $(35m^{2}/g)$. Metastable phase formation and higher content of aggregated particles were observed in the coprecipitated materials. Densification was 95% to 98% complete after 5 hour sintering at $1500^{\circ}C$ for the recrystallized powders while densities of the coprecipitated powders were below 75%.

Synthesis and Properties of ITO Nano Powders by Spray Drying Process (분무건조법에 의한 ITO 나노분말의 합성과 특성)

  • 허민선;최철진;권대환
    • Journal of Powder Materials
    • /
    • v.11 no.1
    • /
    • pp.22-27
    • /
    • 2004
  • The Indium Tin Oxide(ITO) nano powders were prepared by spray drying and heat treatment process. The liquid solution dissolved Indium and Tin salts was first spray dried to prepare chemically homogeneous recursor powders at the optimum spray drying conditions. Subsequently, the precursor powders were subjected to eat treatment process. The nano size ITO powders was synthesized from the previous precursor powders and the npuities also were decreased with increasing heat treatment temperature. Furthermore, the lattice parameter of TO nano powders was increased by doping Tin into Indium with increasing heat treatment temperature. The par icle size of the resultant ITO powders was about 20∼50nm and chemical composition was composed of In:Sn =86:10 wt.% at 80$0^{\circ}C$.

Properties of CuInSe$_2$ Films Prepared by Selenization of Sputtered Cu/In (Sputter 증착된 Cu/In을 Selenization 하여 얻은 CuInSe$_2$ 박막의 특성)

  • 김선재;임호빈
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1991.10a
    • /
    • pp.3-6
    • /
    • 1991
  • CuInSe$_2$ films have been prepared by selenium vapor annealing of sputtered Cu/In layer. The properties of selenized CuInSe$_2$films have been studied as a function of selenization temperature for two sputtered thicknesses. A large indium loss occurs in the sputtered Cu/In layer during the selenization. The indium loss with the selenization temperature is confirmed by the increase in the amount of CuxSe phase at lower temperature and the decrease in the crystallinity of chalocpyrite CuInSe$_2$phase at higher temperature. The variations of the electrical properties in the selenized films with the selenization conditions are due primarily to the variation of hole concentration. The variation of the hole concentration can be explanined by the indium loss away the sputtered Cu/In layer.

Preparation of InN thin films by reactive sputtering (반응성 스퍼터링에 의한 InN 박막 제작)

  • 김영호;송복식;정성훈;문동찬;김선태
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.62-65
    • /
    • 1997
  • Indium nitride thin films were deposited on Si(100) substrates by reactive sputtering method. The metallic indium target was sputtered by nitrogen gas with rf sputtering equipment. The surface morphology and cross-section of the InN thin films were investigated by scanning electron microscopy. The crystal orientations were investigated by X-ray diffraction and the Hall effect were measured with van der Pauw method. The indium nitride thin film showed high Hall mobility(215$\textrm{cm}^2$/V-sec) at 5mTorr total pressure and rf power 60W.

  • PDF

Electrochemical Immunosensor Using the Modification of an Amine-functionalized Indium Tin Oxide Electrode with Carboxylated Single-walled Carbon Nanotubes

  • Aziz, Md.Abdul;Yang, Hae-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.7
    • /
    • pp.1171-1174
    • /
    • 2007
  • We have developed an electrochemical immunosensor that combines the electrocatalytic property of carbon nanotube and the low background current of indium tin oxide (ITO) electrode. A partial monolayer of carboxylated single-walled carbon nanotube (CCNT) is covalently formed on an ITO electrode modified with amine-terminated phosphonic acid. Nonspecifically adsorbed avidin on the hydrophobic sidewalls of CCNT is used to immobilize biotinylated antibody and to reduce the nonspecific binding to CCNT. The biotinylated antimouse IgG bound on avidin and the antimouse IgG conjugated with alkaline phosphatase (ALP) sandwiches a target mouse IgG. ALP catalyzes the conversion of p-aminophenyl phosphate monohydrate into p-aminophenol, which is electrocatalytically oxidized to p-quinone imine on CCNT surface. Moderate electrocatalytic electrode obtained with the combination of CCNT and ITO allows low detection limit (0.1 ng/ mL).

Excellent properties of Indium Tin Oxide-Carbon Nano tube Nano composites at low temperatures by Nano Cluster Deposition technique

  • Pammi, S.V.N.;Park, Jong-Hyun;Chanda, Anupama;Park, Yeon-Woong;Ahn, Jun-Ku;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.7-7
    • /
    • 2010
  • Indium tin oxide (ITO) - SWNT nano crystalline composites was synthesized at low temperature(${\sim}250^{\circ}C$)using Nano Cluster Deposition technique by Metal Orhoganic Chemical Vapor Deposition method. XRD patterns of ITO- SWNT composite shows pure cubic phases without any secondary phase. I-V measurement gives resistance of 12 ohms for Sn doped (3 wt %) indium oxide-SWNT composites. The electrical conductivity of the nano composites is significantly enhanced compared to the SWNT.

  • PDF

Study on Solution Processed Indium-Yttrium-Oxide Thin-Film Transistors Using Poly (Methyl Methacrylate) Passivation Layer (PMMA 보호막을 이용한 용액 공정 기반의 인듐-이티륨-산화물 트랜지스터에 관한 연구)

  • Kim, Han-Sang;Kim, Sung-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.7
    • /
    • pp.413-416
    • /
    • 2017
  • We investigated solution-processed indium-yttrium-oxide (IYO) TFTs using apoly (methyl methacrylate) (PMMA) passivation layer. The IYO semiconductor solution was prepared with 0.1 M indium nitrate hydrate and 0.1 M yttrium acetate dehydrate as precursor solutions. The solution-processed IYO TFTs showed good performance: field-effect mobility of $13.13cm^2/Vs$, a threshold voltage of 8.2 V, a subthreshold slope of 0.93 V/dec, and a current on-to-off ratio of $7.2{\times}10^6$. Moreover, the PMMA passivation layers used to protectthe IYO active layer of the TFTs, did so without deteriorating their performance under ambient conditions; their operational stability and electrical properties also improved by decreasing leakage current.