• Title/Summary/Keyword: indirect tensile strength ratio

Search Result 47, Processing Time 0.028 seconds

A Study on Double - Punch Test for Tensile Strength of Concrete (Double-Punch Test에 의한 콘크리트의 인장강도 시험에 관한 연구)

  • 이우종;고재군
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.2
    • /
    • pp.82-94
    • /
    • 1988
  • The purpose of this study is to introduce the Double Punch test method which is an indirect testing method of tensile strength of concrete, and to compare with the tensile strength of concrete as determined by the split-cylinder test, a practical method for performing the Double Punch test to obtain the tensile strength of concrete is proposed and recommended for general use. In this study, the dimensions of cylindrical specimens used in the Double-Punch test were 15X30cm, 15X15cm, 10${\times}$(20cm, and 5${\times}$l0cm, and in the split-cylinder test were 15${\times}$(30cm, 15${\times}$(15cm, and 10${\times}$(20cm. And the diameters of loading punches used in the Double-Punch test were 1.5cm, 2.5cm, and 3.5 cm. The results obtained from tests are summarized as follows ; 1. In the split-cylinder test, the tensile strength of concrete by the linear elasticity theory is similar to that of plasticity theory. 2. Both split-cylinder test and Double-Punch test, tensile strength of concrete is increased with decreasing specimen size. This tendency is identical when the ratio of specimen diameter to height is 1: 2, but that tendency is quite different when the ratio is 1: 3. In the Double-Punch test, if specimen size is constant, by increasing the punch size, tensile strength of concrete is increased, too. 4. Using a 15 ${\times}$( 15 cm cylinder specimen and 3.5 cm diameter punch in the Double Punch test would give the most uniform and consistent result in tensile strength, and the result showed a gQod correlation with splitting tensile strength from 15 x 30cm specimen. 5. In order to obtain satisfactory results and to nuninuze variability, it is proposed that specimens of 15 cm in diameter and 15 cm in height with two 3.5 cm diameter punches should be used. It seems, therefore, reasonable tt) take f't=0.0024 P(kg / cm$^2$) as a working formula for computing the tensile strength in the Double Punch test for concrete.

  • PDF

A Study on Estimation of the Pavement fatigue Life by Loading (하중작용(荷重作用)에 의한 포장수명(鋪裝壽命)에 관한 연구(硏究))

  • Nam, Young Kug
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.4
    • /
    • pp.83-92
    • /
    • 1989
  • For many of the rigid pavements the observations of significantly different performances were explained to relate distress mechanisms to distress manifestation and to develope better prediction of performance. This paper summarizes the result of an investigation of the resilient elastic and fatigue behavior of inservice cement concrete pavements. Static indirect tensile tests were. conducted in order to estimate the average tensile strength of each of the projects Repeat-load indirect tensile tests were conducted to determine the fatigue and resilient elastic characteristics and the relationship between fatigue life and stress/strength ratio. Deformation measurements were taken during fatigue testing in order to determine the resilient elastic properties of the material and the changes in these properties during the test period.

  • PDF

Compressive and tensile strength enhancement of soft soils using nanocarbons

  • Taha, Mohd R.;Alsharef, Jamal M.A.;Khan, Tanveer A.;Aziz, Mubashir;Gaber, Maryam
    • Geomechanics and Engineering
    • /
    • v.16 no.5
    • /
    • pp.559-567
    • /
    • 2018
  • Technological innovations in sustainable materials for soil improvement have attracted considerable interest due to energy crisis and environmental concerns in recent years. This study presents results of a comprehensive investigation on utilization of nanocarbons in reinforcement of a residual soil mixed with 0, 10 and 20% bentonite. Effects of adding proportionate quantities (0, 0.05, 0.075, 0.1 and 0.2%) of carbon nanotubes and carbon nanofibers to soil samples of different plasticities were evaluated. The investigation revealed that the inclusion of nanocarbons into the soil samples significantly improved unconfined compressive strength, Young's modulus and indirect tensile strength. It was observed that carbon nanofibers showed better performance as compared to carbon nanotubes. The nanosized diameter and high aspect ratio of nanocarbons make it possible to distribute the reinforcing materials on a much smaller scale and bridge the inter-particles voids. As a result, a better 'soil-reinforcing material' interaction is achieved and desired properties of the soil are improved at nanolevel.

A Development of Recycled Glass Powder using Asphalt Concrete Filler and Evaluation of Practical Use at the Field (아스콘 채움재용 폐유리 미분말 개발 및 현장 적용 평가)

  • Ryu, Deug-Hyun;Jeon, Jun-Young;Jo, Shin-Haeng;Jun, Soon-Je
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.113-116
    • /
    • 2007
  • This is a research for evaluated recycled glass powder to add asphalt concrete filler. To make a comparative study, Mechanical performance of lime stone and slag dust Mixtures was evaluated according to test procedure. Lab. performance tests included marshall stability, indirect tensile strength, resilient modulus and wheel tracking. Water resistance tests were evaluated by marshall strength ratio and tensile strength ratio. In conclusion, Results of mechanical performance showed that recycled glass powder mixtures were equivalent to conventional mixtures. Especially, result of tensile strength ratio tested recycled glass powder mixtures was superior to conventional mixtures.

  • PDF

Characteristics of Asphalt Concrete Utilizing Coal Ash Based Filler (석탄회 기반 채움재를 활용한 아스팔트 콘크리트의 공학적 특성)

  • Kim, Young-Wook;Park, Keun-Bae;Woo, Yang-Yi;Moon, Bo-Kyung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.305-312
    • /
    • 2017
  • This paper presents a laboratory investigation into the effects of fillers using industrial by-product such as coal ash, IGCC slag on properties of hot-mixed asphalt concrete variation with filler content. For comparison, existing mixture with lime and dust have also been considered. Marshall and flow test has been considered for the purpose of mix design as well as evaluation of mixture. Other performance tests such as indirect tensile strength test, tensile strength ratio(moisture susceptibility), dynamic stability have also been carried out variation with filler content. It is observed that the mixes with industrial by-product exhibit conform with quality standard. Therefore, it has been recommended to utilize industrial by-product based on fly ash wherever available, not only reducing the produce cost but also partly solve the industrial by-product utilization and disposal problem.

Physical Properties of Asphalt Concrete Using Wasted Vinyl Aggregates (폐비닐골재를 사용하는 아스팔트 콘크리트의 물리적 성질)

  • Kim, Byeong Jun;Kim, Young Chin;Park, Joo Young;Jeong, Jin Hoon
    • International Journal of Highway Engineering
    • /
    • v.15 no.2
    • /
    • pp.73-81
    • /
    • 2013
  • PURPOSES : In this study, various laboratory tests were performed to investigate basic physical properties of the asphalt concrete which uses wasted vinyl aggregates. METHODS : The thermal conductivity, ultrasonic velocity, Marshall stability, flow, indirect tensile strength were measured according to binder content and wasted vinyl aggregate content. An experimental construction was performed to verify construct ability of the asphalt pavement using the wasted vinyl aggregates. RESULTS : The thermal conductivity and ultrasonic velocity decreased showing insulation effect by mixing more wasted vinyl aggregate, whereas stability and flow increased. The void ratio shows similar value regardless of the mixing ratio. The highest indirect tensile strength was measured at 2.5% of wasted vinyl aggregate content. The construct ability was verified by observing the process of mixing, placing, and compaction and the state of the pavement surface. CONCLUSIONS : The basic properties and construct ability of the asphalt concrete using the wasted vinyl aggregates were verified. The temperature according to pavement depth will be measured to verify the insulation effect of the wasted vinyl aggregates. In addition, amount of snowfall, snowmelt area, and ice adhesion strength will be analyzed quantitively.

A Study on the Physical Properties of Recycled Asphalt Mixtures Using Glass Fiber Reinforcement (유리섬유 보강재를 이용한 재활용 아스팔트 혼합물의 물리적 특성에 관한 연구)

  • Park, Ki Soo;Yoo, Pyeong Jun
    • International Journal of Highway Engineering
    • /
    • v.20 no.4
    • /
    • pp.27-34
    • /
    • 2018
  • PURPOSES : The objective of this study is to evaluate the physical properties of recycled asphalt mixtures reinforced with glass fiber. METHODS : Firstly, mixing design was conducted on recycled asphalt mixture for use of 50% recycled aggregate. Various laboratory tests were performed on four types of recycled asphalt mixtures with different glass fiber content to evaluate the physical properties. The laboratory tests include indirect tensile strength test, dynamic modulus test, Hamburg wheel tracking test and tensile-strength ratio to evaluate cracks, rutting and moisture resistance of mixtures. RESULTS : The indirect tensile strength of fiber reinforced glass increased about 139.4%. As a result of comparing the master curves obtained by the dynamic modulus test, the elasticity was low in the low temperature region and high in the high temperature region when the glass fiber was reinforced. The glass fiber contents of PEGS 0.3%, Micro PPGF 0.1% and Macro PPGF 0.3% showed the highest moisture resistance and rutting resistance. CONCLUSIONS : The test results show that use of glass fiber reinforcement can increase the resistance to cracking, rutting, and moisture damage of asphalt mixtures. It is also necessary to validate the long-term performance of recycled asphalt mixtures with glass fiber using full scale pavement testing and field trial construction.

The impact of different shapes of aggregate and crumb rubber on the deformation properties of asphalt concrete

  • Felix N. Okonta;Koketso Tshukutsoane;Babak Karimi
    • Geomechanics and Engineering
    • /
    • v.36 no.1
    • /
    • pp.39-50
    • /
    • 2024
  • Bitumen and high-quality subangular aggregates, the two principal materials used for asphalt concrete construction, are finite and expensive materials. The general availability of crumb rubber and naturally occurring aggregates of different shapes, especially flat and elongated shapes, indicates that they are feasible alternative materials for expanding the volume of bitumen and utilizing a wider range of aggregate shapes for the development of asphalt concrete, with an associated environmental benefit. The study investigated the effect of adding up to 15% crumb rubber and aggregates sorted into different groups, i.e., rounded, elongated, flat, and their combinations, on the rheological and mechanical properties and durability of 50/70 of hot-mix asphalt pavement. The addition of crumb rubber decreased ductility and penetration but increased the softening point. For a 5.5% bitumen content, asphalt concrete briquettes consisting of 7% crumb rubber and three types of aggregate shapes, i.e., 100% rounded, a mix of 75% rounded and 25% elongated, and a mix of 75% rounded, 15% elongated and 10% flat, were associated with high Marshall stability and indirect tensile strength as well as low lateral deformation due to their high solidity and moderate angularity ratio. Also, the addition of 7% crumb rubber resulted in a significant improvement in the tensile strength ratio and rebound strain of briquettes consisting of 75% rounded and 25% elongated aggregates and those with 75% rounded, 15% elongated and 10% flat aggregates. In relation to the parameters investigated, the three groups of briquettes met some of the local (South Africa) requirements for the surface course and base course of low traffic volume roads.

Limit Span/Depth Ratio for Indirect Deflection Control in Reinforced Concrete Flexural Members (철근콘크리트 휨부재의 처짐 간접제어를 위한 한계 지간/깊이-비 연구)

  • Choi, Seung-Won;Kim, Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1A
    • /
    • pp.35-41
    • /
    • 2011
  • In concrete structural design provisons, two methods are normally provided to control deflection; direct method and indirect method. It is more efficient to use the indirect deflection control by which the span/depth ratio is limited not to exceed an allowable deflection limit. Because actual deflections are affected by many causes, it is complicated to evaluate actual deflections. In this study, limit span/depth ratios are derived from the deflection calculated directly at the serviceability limit state in RC members. The deflection is obtained from using average curvature, which depends on materials model used. The main variables examined are tension stiffening effect, concrete strength, cross section size and compressive steel ratio. It could be appeared that more analytical consistency is secured to use the 2nd order form of tension stiffening effect. And the limit span/depth ratio is dependent on material strength, tensile and compressive steel ratio but it is independent on cross-section size.

A study on performance of the recycle asphalt mixtures using the foamed asphalt method (폼드 아스팔트 공법을 이용한 재활용 아스팔트 혼합물의 성능 연구)

  • Park, Tae-Soon
    • International Journal of Highway Engineering
    • /
    • v.12 no.4
    • /
    • pp.203-209
    • /
    • 2010
  • The base asphalt mixtures that used the waste recycle asphalt correcting from the four different overlay construction sites in Seoul city were made using the foamed asphalt method. The sample mixtures were made in different ratio of the recycle asphalt and new asphalt material and the performance of the mixtures of the different ratio was investigated in the laboratory. The laboratory tests includes the Marshall test, the indirect tensile test, the resilient modulus test, the creep test and the wheel tracking test. The test of the recycle foamed asphalt mixtures(RFA) were compared with the those of the recycle hot mix asphalt(RHA) mixtures. The performance of the RFA is comparable to that of the RHA. On the other hand, the indirect tensile strength of the RFA in dry condition is lower than that of RHA and the indirect tensile strength of the RFA in wet condition is much lower than that of the RHA.