• Title/Summary/Keyword: indicator microorganisms

Search Result 82, Processing Time 0.029 seconds

Investigation of Potential Photoreactivation of Pseudomonas aeruginosa after LP or MP UV Irradiation (저압 및 중압 자외선 조사에 의해 불활성화된 Pseudomonas aeruginosa의 광회복능 조사)

  • Mun, Sung-Min;Cho, Min;Yoon, Je-Yong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.5
    • /
    • pp.755-761
    • /
    • 2006
  • Recently, there is growing interest in ultraviolet (UV) irradiation as a disinfection technic in drinking water production due to its effectiveness to inactivate microorganisms such as Crytosporidium parvum without forming disinfection byproducts. However, UV disinfection is known for its drawback such as photoreactivation. Despite many works concerning the photoreactivation, most of works were focused on indicator or non pathogenic microorganisms. The objective of this study is to examine the photoreactivation of Pseudomonas aeruginosa which is an opportunistic pathogen as UV radiation by LP and MP UV lamp was applied. The result showed that P. aeruginosa had high photo repair efficiency regardless of the type of UV irradiation. Both of the effective log repair values of LP and MP UV irradiation were found approximately 2.6 log. In addition, photo repaired P. aeruginosa was not significantly different in forming biofilm in comparison with non treated P. aeruginosa.

Study of 2,3,5-Triphenyltetrazolium Chloride for Detection of Pathogenic Microorganisms (2,3,5-Triphenyltetrazolium Chloride를 이용한 병원성 미생물 확인시험에 관한 연구)

  • Kang, Jung Wook;Bae, Jun Tae;Yeon, Jae Young;Kim, Young Ho;Kim, Jin Hwa;Lee, Geun Soo;Pyo, Hyeong Bae
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.40 no.3
    • /
    • pp.307-311
    • /
    • 2014
  • 2,3,5-Triphenyltetrazolium chloride (TTC) is used as a redox indicator in culture media. It is colorless in the oxidized form and is reduced to formazan, an insoluble pigment, by dehydrogenases in actively growing microbial cells. The aim of this study was to assess by microbial test of the pathogenic microorganisms using TTC reduction. The pathogenic microorganisms were reduced in medium by dehydrogenase to produce insoluble red formazan. We observed that the optimization method of TTC allowed more than 12 h incubation in 0.04% concentration. Also, the growth of microorganisms with media was increased formazan production. We confirmed that microorganisms were quickly observed to grow colonies cultured red color without affecting the growth of microorganisms. It is suggested that the microbial test using TTC can provide better and quicker test method in cosmetics development.

Distribution of Indicator Organisms and Incidence of Pathogenic Bacteria in Raw Beef Used for Korean Beef Jerky

  • Kim, Hyoun-Wook;Kim, Hye-Jung;Kim, Cheon-Jei;Paik, Hyun-Dong
    • Food Science and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1337-1340
    • /
    • 2008
  • The objective of this study was to evaluate the microbial safety of raw beef used to produce Korean beef jerky, The raw beef samples harbored large populations of microorganisms. In particular, psychrophilic bacteria were found to be most numerous ($9.2{\times}10^3-1.0{\times}10^5\;CFU/g$) in the samples. Mesophilic bacteria and anaerobic bacteria were present in average numbers ($10^3-10^5\;CFU/g$). Spore-forming bacteria and coliforms were not detected below detection limit. Yeast and molds were detected at $2.2{\times}10^1-7.8{\times}10^2\;CFU/g$ in the raw beef. Ten samples of raw beef were analyzed for the presence of pathogenic bacteria. Bacillus cereus was isolated from sample B, G, and H. The B. cereus isolates from raw beef samples were identified with 99.8% agreement according to the API CHB 50 kit.

Inactivation of various bacteriophages in wastewater by chlorination; Development of more reliable bacteriophage indicator systems for water reuse (하수 처리 과정의 염소 소독에 대한 여러 박테리오파지들의 저항성 평가; 물 재이용 과정의 안전성 관리를 위한 바이러스 지표미생물의 개발)

  • Bae, Kyung-Seon;Shin, Gwy-Am
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.3
    • /
    • pp.285-291
    • /
    • 2016
  • There has been an accelerating increase in water reuse due to growing world population, rapid urbanization, and increasing scarcity of water resources. However, it is well recognized that water reuse practice is associated with many human health and ecological risks due to numerous chemicals and pathogenic microorganisms. Especially, the potential transmission of infectious disease by hundreds of pathogenic viruses in wastewater is one of the most serious human health risks associated with water reuse. In this study, we determined the response of different bacteriophages representing various bacteriophage groups to chlorination in real wastewater in order to identify a more reliable bacteriophage indicator system for chlorination in wastewater. Different bacteriophages were spiked into secondary effluents from wastewater plants from three different geographic areas, and then subjected to various doses of free chlorine and contact time at $5^{\circ}C$ in a bench-scale batch disinfection system. The inactivation of ${\phi}X174$ was relatively rapid and reached ~4 log10 with a CT value of 5 mg/L*min. On the other hand, the inactivation of bacteriophage PRD1 and MS2 were much slower than the one for ${\phi}X174$ and only ~1 log10 inactivation was achieved by a CT value of 10 mg/L*min. Overall, the results of this study suggest that bacteriophage both MS2 and PRD1 could be a reliable indicator for human pathogenic viruses for chlorination in wastewater treatment processes and water reuse practice.

Applicability Investigation of E.coli, RNA and DNA Bacteriophages for Possible Indicator Microorganisms Based on the Inactivation Effectiveness by UV (UV 불활성화 효과에 의거한 E.coli, RNA 및 DNA 박테리오파지의 대체 지표 미생물로서의 적용성 검토)

  • Kim, Il-Ho;Wahid, Marfiah AB;Tanaka, Hiroaki
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.11
    • /
    • pp.1063-1068
    • /
    • 2010
  • This study compared UV and UV/$H_2O_2$ inactivation of E.coli, a possible indicator microorganism for fecal contamination of water, and $Q{\ss}$ phage, an indicator for pathogenic viruses. UV inactivation of $Q{\ss}$, T4 and lambda phages in actual secondary effluent was investigated, too. As a result, similar inactivation efficiency between $Q{\ss}$ phage and E.coli was observed during UV treatment, while $Q{\ss}$ phage showed higher resistance to UV/$H_2O_2$ than E.coli. $Q{\ss}$ phage resistance to UV or UV/$H_2O_2$ does not reflect those of all pathogenic viruses. However, the result tells that the use of E.coli inactivation efficiency in evaluating microbiological safety of water could not always ensure the sufficient safety from pathogenic viruses. Meanwhile, $Q{\ss}$ phage showed less resistance to UV than T4 and lambda phages, indicating that the use of $Q{\ss}$ phage as an indicator virus may bring insufficient disinfection effectiveness by causing the introduction of lower UV dose than required. Consequently, it can be thought that T4 or lambda phages would be more desirable indicators in ensuring the sufficient disinfection effectiveness for various pathogenic viruses.

Evaluation of adenosine triphosphate testing for on-farm cleanliness monitoring compared to microbiological testing in an empty pig farrowing unit

  • Yi, Seung-Won;Cho, Ara;Kim, Eunju;Oh, Sang-Ik;Roh, Jae Hee;Jung, Young-Hun;Choe, Changyong;Yoo, Jae Gyu;Do, Yoon Jung
    • Journal of Animal Science and Technology
    • /
    • v.62 no.5
    • /
    • pp.682-691
    • /
    • 2020
  • Careful cleaning and disinfection of pigpens is essential to prevent disease spread and avoid the resultant economic losses. Hygiene in pigpens is generally evaluated by visual monitoring supplemented with bacteriological monitoring, which includes counting the total aerobic bacteria (TAB) and/or fecal indicator bacteria (FIB). However, these methods present drawbacks such as time and labor requirements. As adenosine triphosphate (ATP) is ubiquitous in all living organisms including microorganisms, this study aimed to directly compare the results of microbial assessment and ATP quantification, and to suggest possible detailed application methods of the ATP test for hygiene evaluation in pigpens of a farrowing unit. Before and after standard cleaning procedures, samples were collected from the floor corner, floor center, and feeding trough of four pigpens at different time points. No FIB were detected and both the TAB and ATP levels were significantly decreased in the floor center area after cleaning. FIB were continuously detected after cleaning and disinfection of the floor corners, and there was no significant ATP level reduction. The feeding trough did not show any significant difference in these values before and after cleaning, indicating insufficient cleaning of this area. The levels of TAB and ATP after cleaning were significantly correlated and the average ATP value was significantly lower in the absence of FIB than in their presence. In the absence of standard references, a more thorough hygiene management could be achieved evenly by supplementing cleaning or disinfection based on the lowest ATP results obtained at the cleanest test site, which in the present study was the floor center. Overall, these results indicate that the on-farm ATP test can be used to determine the cleanliness status, in addition to visual inspection, as an alternative to laboratory culture-based testing for the presence of microorganisms.

Enhanced Production, Purification, and Partial Characterization of Lacticin BH5, a Kimchi Bacteriocin Produced by Lactococcus lactis BH5

  • Paik, Hyun-Dong;Hyun, Hyung-Hwan;Pyun, Yu-Ryang;Ahn, Cheol;Hur, Ji-Woon;Kim, Tae-Seok;Yeo, Ick-Hyun
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2000.04a
    • /
    • pp.53-60
    • /
    • 2000
  • Strain BH5 was isolated from naturally fermented Kimchi and identified as a bacteriocin producer, which has bactericidal activity against Micrococcus flavus ATCC 10240. Strain BH5 was identified tentatively as Lactococcus lactis by the API test and some characteristics. Lactococcus lactis BH5 showed a broad spectrum of activity against most of the non-pathogenic and pathogenic microorganisms tested by the modified deferred method. The activity of lacticin BH5, named tentatively as the bacteriocin produced by Lactococcus lactis BH5, was detected at the mid-log growth phase, reached its maximum during the early stationary phase, and decreased after the late stationary phase. Lacticin BH5 also showed a relatively broad spectrum of activity against non-pathogenic and pathogenic microorganisms as tested by the spot-on-lawn method. Its antimicrobial activity on sensitive indicator cells was completely disappeared by protease XIV or ${\alpha}$-chymotrypsin. The inhibitory activities of lacticin BH5 were detected during treatments up to 100$^{\circ}C$ for 30 min. Lacticin BH5 was very stable over a pH range of 2.0 to 9.0 and was stable with all the organic solvents examined. The cell concentration and bacteriocin production in strain BH5 were maximum when grown at 30$^{\circ}C$ in a modified MRS medium supplemented with 0.5% tryptone, 1.0% yeast extract, and 0.5% beef extract as nitrogen sources. It demonstrated a typical bactericidal mode of inhibition against Micrococcus flavus ATCC 10240. Lacticin BH5 was purified through ammonium sulfate precipitation, ethanol precipitation, and CM-Sepharose column chromatography. The apparent molecular mass of lacticin BH5 was estimated to be in the region of 3.7 kDa, by the direct detection of bactericidal activity after SDS-PAGE. Mutant strain NO141 which was isolated by nitrosoguanidine mutagenesis produced about 4 fold more bacteriocin than the wild type.

  • PDF

Isolation and Characterization of Benzene-degrading Bacteria. (Benzene 분해 세균의 분리와 특성연구)

  • 김정현;유재근;이형환
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.5
    • /
    • pp.379-383
    • /
    • 1988
  • To evaluate the treatability of activated sludge induced by benzene with microorganisms, isolation and characterization of benzene-degrading microorganisms were carried out. Six bacterial isolates from the activated sludge were identified ; Pseudomonas fluorescens, Enterobacter agglomerans, Enterobacter cloacae, Klebsiella oxytoca, Citrobacter freundii and Klebsiella pneumoniae. P. fluorescens degraded 55% of benzene contained in the medium as a sole carbon source, E. cloacae 24%, E. agglomerans 41%, and K. oxytoca 32%. Optimal temperature, pH and benzene concentration for growth of P. fluorescens appeared to be 31$^{\circ}C$, pH 7.0, and 300mg benzene per liter. When the P. fluorescens was dominant in the activated sludge induced by benzene, the indicator protozoa was Aspidisca sp. When concentration of benzene was about 387mg per liter, the growths of Aspidisca sp. and Litonotus sp. were high. Protozoa, Litonotus sp. and Vorticella sp. did not grow over 1600mg of benzene per liter.

  • PDF

A Study on Microorganisms Decontamination Using a Vapor-Phase Hydrogen Peroxide System (과산화수소 증기 시스템을 이용한 미생물 제독에 관한 연구)

  • Kim, Yun Ki;Kim, Min Cheol;Yoon, Sung Nyo;Hwang, Hyun Chul;Ryu, Sam Gon
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.3
    • /
    • pp.279-288
    • /
    • 2013
  • Objectives: Effectiveness and conditions of vapor-phase hydrogen peroxide (VPHP) system on decontamination of Geobacillus stearothermophilus(GS) spores, Escherichia coli (E.coli) and Enterobacteria phage felix01 (felix01) were determined. Methods: The VPHP system was designed to vaporize 35% (w/w) solution of hydrogen peroxide, continuously to inject and withdraw VPHP. The system and VHP 1000ED (Steris) were operated such that dehumidification and conditioning were initiated without samples in the chamber. Then the samples were loaded into and removed. Coupons (glass, anodizing, silicon, viton) with GS spores ($1{\times}10^6$ colony forming unit/mL [CFU/mL]), E.coli ($1{\times}10^7$ CFU/mL) and felix01 ($1{\times}10^7$ plaque forming unit/mL[PFU/mL]), and Biological Indicator (BI) with GS spores ($1{\times}10^6$ CFU/mL) on stainless steel coupons were used. The tested samples were sonicated and vortexed, and then were plated for enumeration, followed by incubation at $55^{\circ}C$, 24 hr for GS spores, and at $37^{\circ}C$, 24 hr for E.coli and felix01. BI analysis in broth culture was only qualitative. Results: The efficacy of the VPHP system on decontamination was almost equivalent to that of VHP 1000ED. The conditions for complete decontamination with the VPHP system was as follows: concentration; 700~450 ppm, relative humidity; approximately 55%, and temperature; $34{\sim}32^{\circ}C$. When comparing the decontamination efficiency among different kinds of coupons, glass was the most effective, however, all kinds of coupons were decontaminated completely after 60 min exposure in both systems. Conclusion: The VPHP system can be recommended as an alternative system for traditional system using ethylene oxide, formaldehyde or chlorine dioxide.

Safety Investigation on Foodborne Pathogens and Mycotoxins in Honeybee Drone Pupas (수벌번데기로부터 식중독 세균 및 곰팡이독소 안전성 평가)

  • Kim, Se-Gun;Woo, Soon-Ok;Jang, Hye-Ri;Choi, Hong-Min;Moon, Hyo-Jung;Han, Sang-Mi
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.5
    • /
    • pp.399-403
    • /
    • 2018
  • In this study, safety investigations on harmful microorganisms and mycotoxins were conducted on honeybee drone pupae as a new food material, which is rich in nutrients and capable of being mass produced in apiaries. The honeybee drone pupae produced in apiaries were collected from three different regions in Korea and frozen immediately. Subsequently, the samples were subjected to freeze-drying. According to the Korean Food Code test method, coliforms, Salmonella species, Staphylococcus aureus, and enterohemorrhagic Escherichia coli were not detected in 280 honeybee drone pupas. In addition, mycotoxins, aflatoxin $B_1$, ochratoxin A, deoxynivalenol, and zearalenone were not detected. Therefore, it is proposed that the honeybee drone pupae collected from the beehives and immediately frozen as safe from harmful microorganisms and mycotoxins and can be used as a food material.