• Title/Summary/Keyword: independent collimator

Search Result 16, Processing Time 0.026 seconds

Dosimetric Characteristics of Dual Photon Energy Using Independent Collimator Jaws (고에너지 선형가속기의 Independent Collimator를 이용한 비대칭 방사선 조사시 방사선량 결정에 미치는 요인에 관한 연구)

  • Kim Jeung-kee;Choi Young-Min;Lee Hyung-Sik;Hur Won-Joo
    • Radiation Oncology Journal
    • /
    • v.14 no.3
    • /
    • pp.237-244
    • /
    • 1996
  • Purpose : The accurate dosimetry of independent collimator equipped for 6MV and 15MV X-ray beam was investigated to search for the optimal correction factor. Materials and Methods : The field size factors, beam quality and dose distribution were measured by using 6MV, 15MV X-ray Field size factors were measured from $3{\times}3cm^2$ to $35{\times}35cm^2$ by using 0.6cc ion chamber (NE 2571) at Dmax. Beam qualities were measured at different field sizes, off-axis distances and depths. Isodose distributions at different off-axis distance using $10\times10cm^2$ field were also investigated and compared with symmetric field. Result: 1) Relative field size factors was different along lateral distance with maximum changes in $3.1\%$ for 6MV and $5\%$ for 15MV. But the field size factors of asymmetric fields were identical to the modified central-axis values in symmetric field, which corrected by off-axis ratio at Dmax. 2) The HVL and PDD was decreased by increasing off-axis distance. PDD was also decreased by increasing depth For field size more than $5{\times}cm^2$ and depth less than 15cm, PDD of asymmetric field differs from that of symmetric one ($0.5\~2\%$ for 6MV and $0.4\~1.4\%$ for 15MV). 3) The measured isodose curves demonstrate divergence effects and reduced doses adjacent to the edge close to the flattening filter center was also observed. Conclusion . When asymmetric collimator is used, calculation of MU must be corrected with off-axis and PDD with a caution of underdose in central axis.

  • PDF

Dosimetric characteristics of an independent collimator system using measurements performed quarter fields. (Independent jaw를 이용한 비대칭조사면의 선량분포에 관한 연구)

  • Kim Geon O;Jeong Se Yeong;Kim Yeong Beom;Gwon Yeong Ho
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.14 no.1
    • /
    • pp.109-116
    • /
    • 2002
  • The mordem linear accelerators are equipped with X-ray collimators that can be moved independently to allow asymmetric fields with field centers positioned away from the true central axis of the beam. We have studied the dosimetric of an independent collimator system using measurements performed quarter fields. The field size factors for asymmetric fields are compared to those for symmetric fields. Dosimetric measurements include portent depth don, beam penumbra and shape of isodose curves for symmetric and quarter fields.

  • PDF

Beam Shaping by Independent Jaw Closure in Steveotactic Radiotherapy (정위방사선치료 시 독립턱 부분폐쇄를 이용하는 선량분포개선 방법)

  • Ahn Yong Chan;Cho Byung Chul;Choi Dong Rock;Kim Dae Yong;Huh Seung Jae;Oh Do Hoon;Bae Hoonsik;Yeo In Hwan;Ko Young Eun
    • Radiation Oncology Journal
    • /
    • v.18 no.2
    • /
    • pp.150-156
    • /
    • 2000
  • Purpose : Stereotactic radiation therapy (SRT) can deliver highly focused radiation to a small and spherical target lesion with very high degree of mechanical accuracy. For non-spherical and large lesions, however, inclusion of the neighboring normal structures within the high dose radiation volume is inevitable in SRT This is to report the beam shaping using the partial closure of the independent jaw in SRT and the verification of dose calculation and the dose display using a home-made soft ware. Materials and Methods : Authors adopted the idea to partially close one or more independent collimator jaw(5) in addition to the circular collimator cones to shield the neighboring normal structures while keeping the target lesion within the radiation beam field at all angles along the arc trajectory. The output factors (OF's) and the tissue-maximum ratios (TMR's) were measured using the micro ion chamber in the water phantom dosimetry system, and were compared with the theoretical calculations. A film dosimetry procedure was peformed to obtain the depth dose profiles at 5 cm, and they were also compared with the theoretical calculations, where the radiation dose would depend on the actual area of irradiation. Authors incorporated this algorithm into the home-made SRT software for the isodose calculation and display, and was tried on an example case with single brain metastasis. The dose-volume histograms (DVH's) of the planning target volume (PTV) and the normal brain derived by the control plan were reciprocally compared with those derived by the plan using the same arc arrangement plus the independent collimator jaw closure. Results : When using 5.0 cm diameter collimator, the measurements of the OF's and the TMR's with one independent jaw set at 30 mm (unblocked), 15.5 mm, 8.6 mm, and 0 mm from th central beam axis showed good correlation to the theoretical calculation within 0.5% and 0.3% error range. The dose profiles at 5 cm depth obtained by the film dosimetry also showed very good correlation to the theoretical calculations. The isodose profiles obtained on the home-made software demonstrated a slightly more conformal dose distribution around the target lesion by using the independent jaw closure, where the DVH's of the PTV were almost equivalent on the two plans, while the DVH's for the normal brain showed that less volume of the normal brain receiving high radiation dose by using this modification than the control plan employing the circular collimator cone only. Conclusions : With the beam shaping modification using the independent jaw closure, authors have realized wider clinical application of SRT with more conformal dose planning. Authors believe that SRT, with beam shaping ideas and efforts, should no longer be limited to the small spherical lesions, but be more widely applied to rather irregularly shaped tumors in the intracranial and the head and neck regions.

  • PDF

Method of Identifying Dynamic Multileaf Collimator Irradiation that is Highly Sensitive to a Systematic MLC Calibration Error

  • Zygmanski, P.;Kung, J.H.
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.74-82
    • /
    • 2002
  • In Intensity Modulated Radiotherapy (IMRT), radiation is delivered in a multiple of Multileaf Collimator (MLC) subfields. A subfield with a small leaf-to-leaf opening is highly sensitive to a leaf-positional error. We introduce a method of identifying and rejecting IMRT plans that are highly sensitive to a systematic MLC gap error (sensitivity to possible random leaf-positional errors is not addressed here). There are two sources of a systematic MLC gap error: Centerline Mechanical Offset (CMO) and, in the case of a rounded end MLC, Radiation Field Offset (RFO). In IMRT planning system, using an incorrect value of RFO introduces a systematic error ΔRFO that results in all leaf-to-leaf gaps that are either too large or too small by (2ㆍΔRFO), whereas assuming that CMO is zero introduces systematic error ΔCMO that results in all gaps that are too large by ΔCMO = CMO. We introduce a concept of the Average Leaf Pair Opening (ALPO) that can be calculated from a dynamic MLC delivery file. We derive an analytic formula for a fractional average fluence error resulting from a systematic gap error of Δ$\chi$ and show that it is inversely proportional to ALPO; explicitly it is equal to, (equation omitted) in which $\varepsilon$ is generally of the order of 1 mm and Δx=2ㆍΔRFO+CMO. This analytic relationship is verified with independent numerical calculations.

  • PDF

Evaluation of Dosimetric Characteristics of a Double-focused Dynamic Micro-Multileaf Collimator (DMLC) (이중으로 집중된 동적 미세 다엽콜리메이터의 선량학적 특성 평가)

  • Kim, Ae Ran;Seo, Jae-Hyuk;Shin, Hun-Joo;Park, Hyeong Wook;Lee, Ki Woong;Lee, Jae Choon;Kim, Shin-Wook;Kim, Ji Na;Park, Hyeli;Lee, Heui-Kwan;Kang, Young-Nam
    • Progress in Medical Physics
    • /
    • v.26 no.4
    • /
    • pp.223-228
    • /
    • 2015
  • Double-focused micro-Multileaf Collimator (${\mu}MLC$) is able to create radiation fields having sharper dose gradients at the field edges than common MLC. Therefore, ${\mu}MLC$ has been used for the stereotactic radiosurgery (SRS) and Stereotactic Radiotherapy (SRT). We evaluated the dosimetric characteristics of a doublefocused Dynamic-${\mu}MLC$ (DMLC) attached to the Elekta Synergy linear accelerator. For this study, the dosimetric parameters including, Percent Depth Dose (PDD), Leaf leakage and penumbra, have been measured by using of the radiochromic films (GafChromic EBT2), EDGE diode detector and three-dimensional water phantom. All datas were measured on 6 MV x-ray. As a result, The DMLC shows transmission below to 1% and because of double-focused construction of the DMLC, the penumbras of fields with DMLC are independent from the field sizes. In this paper, the resulting dosimetric evaluations proved the applicability of the DMLC attached to the Elekta Synergy linear accelerator.

Dose distribution at junctional area for head and neck radiotherapy (두경부 방사선치료시 접합 조사면의 선량분포)

  • 김정기;김기환;오영기;김진기;정동혁;신교철;양광모;조문준;박인규
    • Progress in Medical Physics
    • /
    • v.12 no.2
    • /
    • pp.161-169
    • /
    • 2001
  • For the head and neck radiotherapy, the technique of half beam using independent collimator is very useful to avoid overlapping of fields particularly when the lateral neck fields are placed adjacent to anterior supraclavicular field. Also abutting photon field with electron field is frequently used for the irradiation of posterior neck when tolerable dose on spinal cord has been reached. Using 6 MV X-ray and 9 MeV electron beams of Clinac1800(Varian, USA) linear accelerator, we performed film dosimetry by the X-OMAT V film of Kodak in solid water phantom and the dose distribution at beam center of 2 half beams further examined according to depths(0 cm, 1.5 cm, 3 cm, 5 cm) for single anterior half beam and anterior/posterior half beam. The dose distribution to the junction line between photon and electron fields was also measured. For the single anterior half beam, the absorption doses at 0.3 cm, 0.5 cm and 1 cm distances from beam center were 88%, 93% and 95% of open beam, respectively. In the anterior/posterior half beams, the absorption doses at 0.3 cm, 0.5 cm and 1 cm distances from beam center were 92%, 93% and 95% of open beam, respectively At the junction line between photon and electron fields, hot spot was developed on the side of the photon field and a cold spot was developed on that of the electron field. The hot spot in the photon side was developed at depth 1.5 cm with 7 mm width. The maximum dose of hot spot was increased to 6% of reference doses in the photon field. The cold spot in the electron side was developed at all measured depths(0.5 cm-3 cm) with 1-12.5 mm widths. The decreased dose in the cold spot was 4.5-30% of reference dose in the electron field. With above results, we concluded that when using electron beam or independent jaw for head and neck radiotherapy, the hot and cold dose area should be considered as critical point.

  • PDF

Dosimetric characteristics of an independent collimator system using measurements performed quarter fields. (Tungsten eyeball shield block의 임상적용에 관한 고찰)

  • Jeong, Deok-Yang;Lee, Byoung-Koo;Hwang, Woong-Koo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.14 no.1
    • /
    • pp.89-94
    • /
    • 2002
  • During radiation therapy with electron beam to eyelid, we must keep the minimal dose on eyeball as possible. especially in the treatment of Sebaceous gland carcinoma, Squamouse cell ca., and basal cell ca. of eyelid and low grade MALToma etc. But if radiation field covered the upper & lower eyelid, it makes a cataract on lens of treated eye, in late complications. Now we reports the advantages of Tungsten eyeball shielding block compare to previously used lead block. with BOLX-I material, we made a eyeball model and measured the absorbed dose of 6MeV & 9MeV electron hem at 6 point of eyeball model with TLD chip. And compare the absorbed dose to previously lead block and other types of Tungsten eyeball shielding block.

  • PDF

Aperture Correction using Distance-Dependent Backprojection for SPECT Images (거리 의존적 역투사를 이용한 SPECT 영상 구경보정)

  • Lee, Nam-Yong
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.4
    • /
    • pp.434-442
    • /
    • 2008
  • The parallel beam SPECT acquires projection data by using parallel hole collimators in conjunction with photon detectors. Those projection data of the parallel beam SPECT are, however, contaminated by the distance dependent blurring because of the inaccuracy of the point response function of the collimator that is used to define the range of directions where photons can be detected. Thus an efficient aperture correction is required. In this paper we propose a distance dependent backprojection method to overcome the time limitation of iterative aperture correction methods and the performance limitation of Fourier-Distance Relation based method. The proposed method achieves aperture correction and fast image reconstruction by replacing the distance independent backprojection of the direct image reconstruction with the distance dependent one. We conducted several simulations to compare the performance of the proposed method with that of the conventional Fourier-Distance Relation based method. The simulation result shows that the proposed method outperforms the Fourier-Distance Relation based method in spatial resolution and robustness against noise.

  • PDF

Dosimetric Characteristics of Dynamic Wedge Technique (Dynamic Wedge의 조직내 방사선량 분포의 특성)

  • Oh Young Taek;Keum Ki Chang;Chu Seong Sil;Kim Gwi Eon
    • Radiation Oncology Journal
    • /
    • v.14 no.4
    • /
    • pp.323-332
    • /
    • 1996
  • Purpose : The wedge filter is the most commonly used beam modifying device during radiation therapy Recently dynamic wedge technique is available through the computer controlled asymmetric collimator, independent jaw. But dosimetric characteristics of dynamic wedge technique is not well known. Therefore we evaluate dosimetric characteristics of dynamic wedge compared to conventional fixed wedge. Materials and Methods : We evaluated dosimetric characteristics of dynamic wedge and fixed wedge by ion chamber, film dosimetry and TLD in phantoms such as water, polystyrene and average breast phantom. Six MV x-ray was used in $15{\times}15cm$ field with 15,30 and 45 degree wedge of dynamic/liked wedge system, Dosimeric characteristics are interpreted by Wellhofer Dosimetrie system WP700/WP700i and contralateral breast dose (CBD) with tangential technique was confirmed by TLD. Results : 1) Percent depth dose through the dynamic wedge technique in tissue equivalent phantom was similar to open field irradiation and there was no beam hardening effect compared to fixed wedge technique. 2) Isodose line composing wedge angle of dynamic wedge is more straight than hard wedge. And dynamic wedge technique was able to make any wedge angle on any depth and field size. 3) The contralateral breast dose in primary breast irradiation was reduced by dynamic wedge technique compared to fixed wedge. When the dynamic wedge technique was applied, the scatter dose was similar to that of open field irradiation. Conclusion : The dynamic wedge technique was superior to fixed wedge technique in dosimetric characteristics and may be more useful in the future.

  • PDF