Beam Shaping by Independent Jaw Closure in Steveotactic Radiotherapy

정위방사선치료 시 독립턱 부분폐쇄를 이용하는 선량분포개선 방법

  • Ahn Yong Chan (Department of Radiation Oncology, Samsung Medical Center Sungkyunkwan University, School of Medicine) ;
  • Cho Byung Chul (Department of Radiation Oncology, Kangdong Sacred Heart Hospital, Hallym University, School of Medicine) ;
  • Choi Dong Rock (Department of Radiation Physics, Tom Baker Cancer Centre, Department of Oncology, University of Calgary) ;
  • Kim Dae Yong (Department of Radiation Oncology, Samsung Medical Center Sungkyunkwan University, School of Medicine) ;
  • Huh Seung Jae (Department of Radiation Oncology, Samsung Medical Center Sungkyunkwan University, School of Medicine) ;
  • Oh Do Hoon (Department of Radiation Oncology, Kangdong Sacred Heart Hospital, Hallym University, School of Medicine) ;
  • Bae Hoonsik (Department of Radiation Oncology, Kangdong Sacred Heart Hospital, Hallym University, School of Medicine) ;
  • Yeo In Hwan (Department of Radiation Oncology, Samsung Medical Center Sungkyunkwan University, School of Medicine) ;
  • Ko Young Eun (Department of Radiation Oncology, Kangdong Sacred Heart Hospital, Hallym University, School of Medicine)
  • 안용찬 (성균관대학교 의과대학 삼성서울병원 치료방사선과학교실) ;
  • 조병철 (한림의대 강동성심병원 치료방사선과학교실) ;
  • 최동락 (캘거리대학 Tom Baker 암센터 방사선물리학과) ;
  • 김대용 (성균관대학교 의과대학 삼성서울병원 치료방사선과학교실) ;
  • 허승재 (성균관대학교 의과대학 삼성서울병원 치료방사선과학교실) ;
  • 오도훈 (한림의대 강동성심병원 치료방사선과학교실) ;
  • 배훈식 (한림의대 강동성심병원 치료방사선과학교실) ;
  • 여인환 (성균관대학교 의과대학 삼성서울병원 치료방사선과학교실) ;
  • 고영은 (한림의대 강동성심병원 치료방사선과학교실)
  • Published : 2000.06.01

Abstract

Purpose : Stereotactic radiation therapy (SRT) can deliver highly focused radiation to a small and spherical target lesion with very high degree of mechanical accuracy. For non-spherical and large lesions, however, inclusion of the neighboring normal structures within the high dose radiation volume is inevitable in SRT This is to report the beam shaping using the partial closure of the independent jaw in SRT and the verification of dose calculation and the dose display using a home-made soft ware. Materials and Methods : Authors adopted the idea to partially close one or more independent collimator jaw(5) in addition to the circular collimator cones to shield the neighboring normal structures while keeping the target lesion within the radiation beam field at all angles along the arc trajectory. The output factors (OF's) and the tissue-maximum ratios (TMR's) were measured using the micro ion chamber in the water phantom dosimetry system, and were compared with the theoretical calculations. A film dosimetry procedure was peformed to obtain the depth dose profiles at 5 cm, and they were also compared with the theoretical calculations, where the radiation dose would depend on the actual area of irradiation. Authors incorporated this algorithm into the home-made SRT software for the isodose calculation and display, and was tried on an example case with single brain metastasis. The dose-volume histograms (DVH's) of the planning target volume (PTV) and the normal brain derived by the control plan were reciprocally compared with those derived by the plan using the same arc arrangement plus the independent collimator jaw closure. Results : When using 5.0 cm diameter collimator, the measurements of the OF's and the TMR's with one independent jaw set at 30 mm (unblocked), 15.5 mm, 8.6 mm, and 0 mm from th central beam axis showed good correlation to the theoretical calculation within 0.5% and 0.3% error range. The dose profiles at 5 cm depth obtained by the film dosimetry also showed very good correlation to the theoretical calculations. The isodose profiles obtained on the home-made software demonstrated a slightly more conformal dose distribution around the target lesion by using the independent jaw closure, where the DVH's of the PTV were almost equivalent on the two plans, while the DVH's for the normal brain showed that less volume of the normal brain receiving high radiation dose by using this modification than the control plan employing the circular collimator cone only. Conclusions : With the beam shaping modification using the independent jaw closure, authors have realized wider clinical application of SRT with more conformal dose planning. Authors believe that SRT, with beam shaping ideas and efforts, should no longer be limited to the small spherical lesions, but be more widely applied to rather irregularly shaped tumors in the intracranial and the head and neck regions.

서론 :정위방사선치료는 높은 정밀도로 크기가 작고 구형인 병변에 국한하여 방사선을 조사할 수 있는 기술이지만 병변의 모양이 구형이 아닌 경우에는 병변 주변의 정상조직에 고선량의 방사선이 조사될 수 있다. 본 연구는 독립턱을 부분적으로 폐쇄하여 방사선량 분포를 개선하는 방법, 선량계산과 선량분포의 도시방법을 보고하고자 한다. 방법 :정위방사선치료 시의 호의 궤적상 병변은 방사선조사영역 내에 포함하면서 주변 정상조직을 최대한 차폐하도록 원형 콜리메이터와 독립턱 부분페쇄를 적절히 조합하였다. 물 펜톰과 마이크로 전리함을 이용하여 출력인자와 조직최대선량비를 측정하여 이론적 계산치와 비교하였다. 필름선량측정계를 이용하여 5 cm 깊이에서의 심부선량분포를 측정하여 계산치와 비교하였다. 이와 같은 측정자료를 자가 개발한 치료계획 프로그램에 반영하여 뇌전이 환자의 정위 방사선치료 선량계산과 도시에 적용하여 원형 콜리메이터만을 이용하였을 경우와 독립턱 부분폐쇄를 추가하였을 경우의 병변과 정상 뇌의 선량체적표를 각각 비교하였다. 결과 : 5.0 cm 직경의 원형 콜리메이터를 사용하고 한 쪽 독립턱을 중심축으로부터 30 mm, 15.5 mm, 8.6 mm, 0 mm 까지 열었을 때 측정한 출력인자와 조직최대선량비는 계산치와 각각 0.5%와 0.3%의 오차범위로 잘 부합하였다. 필름선량계로 얻은 5 cm 깊이의 심부선량분포도 역시 계산치와 잘 부합하였다. 자가 개발한 치료계획 프로그램으로 병변과 정상 뇌의 선량체적표를의 상호 비교를 통하여 독립턱 부분폐쇄를 적용한 경우에 있어서 보다 개선된 선량분포를 얻을 수 있음을 확인하였다. 결론 : 정위방사선치료에 있어서 독립턱의 부분폐쇄를 적용함으로써 보다 개선된 선량분포계획을 얻을 수 있으며 이를 적용하여 비교적 크기가 크고 모양이 불규칙한 병변에 대하여도 정위방사선치료를 확대 적용할 수 있겠다.

Keywords