• Title/Summary/Keyword: incremental loading

Search Result 147, Processing Time 0.026 seconds

Development of Elastic-Plastic Fracture Analysis Program for Structural Elements under an Impact Loadings (충격하중을 받는 구조부재의 탄소성 파괴해석 프로그램 개발)

  • K.S. Kim;J.B. Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.1
    • /
    • pp.61-71
    • /
    • 1998
  • This paper describes a dynamic fracture behaviors of structural elements under elastic or elasto-plastic stress waves in two dimensional space. The governing equation of this problem has the type of hyperbolic partial differential equation, which consists of the equation of motions and incremental elasto-plastic constitutive equations. To solve this problem we introduce Zwas' method which is based on the finite difference method. Additionally, in order to deal with the dynamic behavior of elasto-plastic problems, an elasto-plastic loading path in the stress space is proposed to model the plastic yield phenomenon. Based on the result of this computation, the dynamic stress intensity factor at the crack tip of an elastic material is calculated, and the time history of a plastic zone of a elasto-plastic material is to be shown.

  • PDF

Finite element analysis of ratcheting on beam under bending-bending loading conditions

  • Sk. Tahmid Muhatashin Fuyad;Md Abdullah Al Bari;Md. Makfidunnabi;H.M. Zulqar Nain;Mehmet Emin Ozdemir;Murat Yaylaci
    • Structural Engineering and Mechanics
    • /
    • v.89 no.1
    • /
    • pp.23-31
    • /
    • 2024
  • Ratcheting is the cyclic buildup of inelastic strain on a structure resulting from a combination of primary and secondary cyclic stress. It can lead to excessive plastic deformation, incremental collapse, or fatigue. Ratcheting has been numerically investigated on a cantilever beam, considering the current study's primary and secondary bending loads. In addition, the effect of input frequency on the onset of ratcheting has been investigated. The non-linear dynamic elastic-plastic approach has been utilized. Analogous to Yamashita's bending-bending ratchet diagram, a non-dimensional ratchet diagram with a frequency effect is proposed. The result presents that the secondary stress values fall sequentially with the increase of primary stress values. Moreover, a displacement amplification factor graph is also established to explain the effect of frequency on ratchet occurrence conditions. In terms of frequency effect, it has been observed that the lower frequency (0.25 times the natural frequency) was more detrimental for ratchet occurrence conditions than the higher frequency (2 times the natural frequency) due to the effect of dynamic displacement. Finally, the effect of material modeling of ratcheting behavior on a beam is shown using different hardening coefficients of kinematic hardening material modeling.

Seismic Performance of Coupled Shear Wall Structural System with Relaxed Reinforcement Details (완화된 배근 상세를 갖는 병렬전단벽 구조시스템의 내진성능평가)

  • Song, Jeong-Weon;Chun, Young-Soo;Song, Jin-Kyu;Seo, Soo-Yeon;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.2
    • /
    • pp.187-196
    • /
    • 2016
  • The current seismic design code prescribes that coupling beam should be reinforced using diagonally bundled bars. However, the use of a diagonally bundled bars has a negative effect on constructability and economic efficiency. In the present study, the seismic performance of 4 coupling beams with the different details of reinforcement was evaluated through a cyclic reversal loading test. The specimens were constructed to measure the results of the experimental variable regarding the details of shear reinforcement. Next, the seismic performance of the coupled shear wall system evaluated by methods proposed in the FEMA P695. The cyclic reversal loading test results of this study showed that the performance of coupling beams with relaxed reinforcement detail was almost similar to that of a coupling beam with the ACI detail and meet the level which requested from standard. The result of the seismic evaluation showed that all coupling beams are satisfied with the design code and seismic performance.

Partial Confinement Utilization for Rectangular Concrete Columns Subjected to Biaxial Bending and Axial Compression

  • Abd El Fattah, Ahmed M.;Rasheed, Hayder A.;Al-Rahmani, Ahmed H.
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.1
    • /
    • pp.135-149
    • /
    • 2017
  • The prediction of the actual ultimate capacity of confined concrete columns requires partial confinement utilization under eccentric loading. This is attributed to the reduction in compression zone compared to columns under pure axial compression. Modern codes and standards are introducing the need to perform extreme event analysis under static loads. There has been a number of studies that focused on the analysis and testing of concentric columns. On the other hand, the augmentation of compressive strength due to partial confinement has not been treated before. The higher eccentricity causes smaller confined concrete region in compression yielding smaller increase in strength of concrete. Accordingly, the ultimate eccentric confined strength is gradually reduced from the fully confined value $f_{cc}$ (at zero eccentricity) to the unconfined value $f^{\prime}_c$ (at infinite eccentricity) as a function of the ratio of compression area to total area of each eccentricity. This approach is used to implement an adaptive Mander model for analyzing eccentrically loaded columns. Generalization of the 3D moment of area approach is implemented based on proportional loading, fiber model and the secant stiffness approach, in an incremental-iterative numerical procedure to achieve the equilibrium path of $P-{\varepsilon}$ and $M-{\varphi}$ response up to failure. This numerical analysis is adapted to assess the confining effect in rectangular columns confined with conventional lateral steel. This analysis is validated against experimental data found in the literature showing good correlation to the partial confinement model while rendering the full confinement treatment unsafe.

Cracking Models in Finite Element Analysis of Reinforced Concrete Structure (철근콘크리트 구조물의 유한요소 해석을 위한 균열모델)

  • 최창근;정성훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1991.10a
    • /
    • pp.23-28
    • /
    • 1991
  • A simple, yet effective, material model of concrete is presented in this paper. Based on the orthotropic model in which the assumption of orthogonal principal strain axes is used, the incremental stress-strain relation of concrete is defined in the biaxial stress condition and the rotating crack model is adopted to represent realistically the change of the crack direction according to the different loading pad after cracking. Numerical results obtained from the finite element analysis are compared favourably with the available experimental data. By the parametric study, moreover, it was found that He most important factor in the structural behavior when the reinforced concrete structure is subjected to the dominent shear forces is the tension stiffening effect. The influences of the tension stiffening effect remarkably appears as the steel ratio decreases.

  • PDF

Development of a Program for Consolidation Analysis Using Nonlinear Finite Strain Consolidation Theory (비선형 유한변형률 압밀이론을 이용한 압밀 해석 프로그램 개발)

  • Lee, Song;Lee, Kyu-Hwan;Jeon, Je-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.02a
    • /
    • pp.36-47
    • /
    • 1999
  • Terzaghi's theory of one-dimensional consolidation is restricted in its applicability to relatively thin layers and small incremental loading. Because it is assumed to infinitesimal strain and linear material function. For this reason, Gibson et al established a rigorous formulation for the one-dimensional nonlinear finite strain consolidation theory. There are some difficulties in the application of finite strain consolidation theory. The developed program consisted of several forms and modules. These forms and modules with graphic-user-interfaced format are used in analysis of consolidation practices. For the purpose of verification of developed program. the results of case study and prediction of developed program are compared. The results of comparison is fairly well with prediction and measured data. And with varying finite strain consolidation parameter, g(e) or λ(e), the sensitivity of predicted values were examined.

  • PDF

Spring-Back Prediction for Sheet Metal Forming Process Using Hybrid Membrane/shell Method (하이브리드 박막/쉘 방법을 이용한 박판성형공정의 스프링백 해석)

  • 윤정환;정관수;양동열
    • Transactions of Materials Processing
    • /
    • v.12 no.1
    • /
    • pp.49-59
    • /
    • 2003
  • To reduce the cost of finite element analyses for sheet forming, a 3D hybrid membrane/shell method has been developed to study the springback of anisotropic sheet metals. In the hybrid method, the bending strains and stresses were analytically calculated as post-processing, using incremental shapes of the sheet obtained previously from the membrane finite element analysis. To calculate springback, a shell finite element model was used to unload the final shape of the sheet obtained from the membrane code and the stresses and strains that were calculated analytically. For verification, the hybrid method was applied to predict the springback of a 2036-T4 aluminum square blank formed into a cylindrical cup. The springback predictions obtained with the hybrid method was in good agreement with results obtained using a full shell model to simulate both loading and unloading and the experimentally measured data. The CPU time saving with the hybrid method, over the full shell model, was 75% for the punch stretching problem.

Geometrically nonlinear analysis of thin-walled open-section composite beams

  • Vo, Thuc Phuong;Lee, Jae-Hong
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.113-118
    • /
    • 2008
  • This paper presents a flexural-torsional analysis of thin-walled open-section composite beams. A general geometrically nonlinear model for thin-walled composite beams and general laminate stacking sequences is given by using systematic variational formulation based on the classical lamination theory. The nonlinear algebraic equations of present theory are linearized and solved by means of an incremental Newton-Raphson method. Based on the analytical model, a displacement-based one-dimensional finite element model is developed to formulate the problem. Numerical results are obtained for thin-walled composite beams under general loadings, addressing the effects of fiber angle, laminate stacking sequence and loading parameters.

  • PDF

Analysis of CFRD(Concrete Faced Rockfill Dam) Constructed by Stages (단계축조에 의해 시공된 CFRD의 거동해석)

  • Cho, Sung-Eun;Shin, Dong-Hoon;Jeon, Je-Sung;Kim, Ki-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.583-588
    • /
    • 2005
  • In this study, a concrete faced rockfill dam constructed by stages was numerically analyzed, and the numerical results were compared with in situ measurements. The simple incremental elastic and isotropic hyperbolic model was employed to characterize the nonlinear deformation behavior of rockfill material and computational procedure followed construction sequence. A series of large triaxial tests for rockfill material were carried out to obtain mechanical input parameters. According to the analysis results, relative great additional deformation was introduced at the surface of stage-I dam body due to the loading by stage-II construction. The results reveal that numerical analysis can effectively simulate the construction processes, and some meaningful insights about the behavior of CFRD during construction were gained.

  • PDF

Finite Element Analysis on the Small Scale Yielding of a Crack Tip in Plane Stress (平面應力狀態 에서 균열先端 의 小規模降伏 에 관한 有限要素解析)

  • 임장근;맹주성;김병용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.3
    • /
    • pp.270-277
    • /
    • 1983
  • Plastic plane stress solutions are given for a center cracked strip, characterized by the Ramberg-Osgood plastic index, under bi-axial tension. Using a power law hardening stress-strain relation, an incremental plasticity finite element formulation is developed, and simple formulation is given for computing J-integral with nodal displacements. The near tip angular distribution of von Mises effective stress doesn't differ significantly in magnitude according to the change of loading stress and bi-axial load combination factor. But, for smaller plastic index, the location of its maximum value moves vertically at a head of crack. J-integral value, in the plastic zone near crack tip, decreases with load combination factor for large and small plastic index.