Browse > Article
http://dx.doi.org/10.1007/s40069-016-0178-z

Partial Confinement Utilization for Rectangular Concrete Columns Subjected to Biaxial Bending and Axial Compression  

Abd El Fattah, Ahmed M. (King Fahd University of Petroleum and Minerals)
Rasheed, Hayder A. (Kansas State University)
Al-Rahmani, Ahmed H. (Smislova, Kehnemui & Associates)
Publication Information
International Journal of Concrete Structures and Materials / v.11, no.1, 2017 , pp. 135-149 More about this Journal
Abstract
The prediction of the actual ultimate capacity of confined concrete columns requires partial confinement utilization under eccentric loading. This is attributed to the reduction in compression zone compared to columns under pure axial compression. Modern codes and standards are introducing the need to perform extreme event analysis under static loads. There has been a number of studies that focused on the analysis and testing of concentric columns. On the other hand, the augmentation of compressive strength due to partial confinement has not been treated before. The higher eccentricity causes smaller confined concrete region in compression yielding smaller increase in strength of concrete. Accordingly, the ultimate eccentric confined strength is gradually reduced from the fully confined value $f_{cc}$ (at zero eccentricity) to the unconfined value $f^{\prime}_c$ (at infinite eccentricity) as a function of the ratio of compression area to total area of each eccentricity. This approach is used to implement an adaptive Mander model for analyzing eccentrically loaded columns. Generalization of the 3D moment of area approach is implemented based on proportional loading, fiber model and the secant stiffness approach, in an incremental-iterative numerical procedure to achieve the equilibrium path of $P-{\varepsilon}$ and $M-{\varphi}$ response up to failure. This numerical analysis is adapted to assess the confining effect in rectangular columns confined with conventional lateral steel. This analysis is validated against experimental data found in the literature showing good correlation to the partial confinement model while rendering the full confinement treatment unsafe.
Keywords
rectangular columns; partial confinement; combined loading; eccentricity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Abd El Fattah, A. M. (2012). Behavior of concrete columns under various confinement effects. Ph.D. Dissertation, Kansas State University.
2 Abd El Fattah, A. M., Rasheed, H. A., & Esmaeily, A. (2011). A new eccentricity-based simulation to generate ultimate confined interaction diagrams for circular concrete columns. Journal of the Franklin Institute-Engineering and Applied Mathematics, 348(7), 1163-1176.   DOI
3 Attard, M. M., & Setunge, S. (1996). Stress-strain relationship of confined and unconfined concrete. ACI Materials Journal, 93(5), 432-442.
4 Binici, B. (2005). An analytical model for stress-strain behavior of confined concrete. Engineering Structures, 27(7), 1040-1051.   DOI
5 Saatcioglu, M., & Razvi, S. R. (1992). Strength and ductility of confined concrete. Journal of Structural Engineering, 118(6), 1590-1607.   DOI
6 Scott, B. D., Park, R., & Priestley, N. (1982). Stress-strain behavior of concrete confined by overlapping hoops at law and high strain rates. ACI Journal, 79(1), 13-27.
7 Saatcioglu, M., Salamt, A. H., & Razvi, S. R. (1995). Confined columns under eccentric loading. Journal of Structural Engineering, 121(11), 1547-1556.   DOI
8 Samani, A. K., & Attard, M. (2012). A stress-strain model for uniaxial and confined concrete under compression. Engineering Structures, 41, 335-349.   DOI
9 Schickert, G., & Winkler, H. (1977). Results of tests concerning strength and strain of concrete subjected to multiaxial compressive stresses (p. 277). No: Deutscher Ausschuss for Stahlbeton (Berlin).
10 Sheikh, S. A., & Uzumeri, S. M. (1982). Analytical model for concrete confinement in tied columns. Journal of Structural Engineering, ASCE, 108(ST12), 2703-2722.
11 Wee, T. H., Chin, M. S., & Mansur, M. A. (1996). Stress-strain relationship of high strength concrete in compression. Journal of Materials in Civil Engineering, 8(2), 70-76.   DOI
12 Willam, K. J., & Warnke, E. P. (1975). Constitutive model for the triaxial behavior of concrete. The International Association for Bridge and Structural Engineering, 19, 1-31.
13 Yoo, S. H., & Shin, S. W. (2007). Variation of ultimate concrete strain at RC columns subjected to axial loads with bi-directional eccentricities. Key Engineering Materials, 348-349, 617-620.   DOI
14 Zahn, F., Park, R., & Priestley, M. J. N. (1989). Strength and ductility of square reinforced concrete column sections subjected to biaxial bending. ACI Structural Journal, 86(2), 123-131.
15 Elwi, A., & Murray, D. W. (1979). A 3D hypoelastic concrete constitutive relationship. Journal of Engineering Mechanics, 105, 623-641.
16 Bonet, J. L., Barros, F. M., & Romero, M. L. (2006). Comparative study of analytical and numerical algorithms for designing reinforced concrete section under biaxial bending. Computers & Structures, 84(31-32), 2184-2193.   DOI
17 Braga, F., Gigliotti, R., & Laterza, M. (2006). Analytical stressstrain relationship for concrete confined by steel stirrups and/or FRP jackets. Journal of Structural Engineering, 132(9), 1402-1416.   DOI
18 Campione, G., & Minafo, G. (2010). Compressive behavior of short high-strength concrete columns. Engineering Structures, 32(9), 2755-2766.   DOI
19 Cedolin, L., Cusatis, G., Eccheli, S., & Roveda, M. (2008). Capacity of rectangular cross sections under biaxially eccentric loads. ACI Structural Journal, 105(2), 215-224.
20 Cusson, D., & Paultre, P. (1995). Stress-strain model for confined high-strength concrete. ASCE Journal of Structural Engineering, 121(3), 468-477.   DOI
21 Fafitis, A., & Shah, S. P. (1985). Lateral reinforcement for highstrength concrete columns. ACI Special Publication, SP 87-12, pp. 213-232. Detroit, MI: American Concrete Institute.
22 Fujii, M., Kobayashi, K., Miyagawa, T., Inoue, S., & Matsumoto, T. (1988). A study on the application of a stress-strain relation of confined concrete. In Proceedings of JCA cement and concrete (Vol. 42). Tokyo, Japan: Japan Cement Association.
23 Hoshikuma, J., Kawashima, K., Nagaya, K., & Taylor, A. W. (1997). Stress-strain model for confined reinforced concrete in bridge piers. Journal of Structural Engineering, 123(5), 624-633.   DOI
24 Park, R., Priestley, M. J. N., & Gill, W. D. (1982). Ductility of square confined concrete columns. Journal of Structural Division, ASCE, 108(ST4), 929-950.
25 Hsu, L. S., & Hsu, C. T. T. (1994). Complete stress-strain behavior of high-strength concrete under compression. Magazine of Concrete Research, 46(169), 301-312.   DOI
26 Kaba, S. A., & Mahin, S. A. (1984). Refined modeling of reinforced concrete columns for seismic analysis. Report No. UBC/EERC-84/3. Berkeley, CA: University of California, Berkeley.
27 Lejano, B. A. (2007). Investigation of biaxial bending of reinforced concrete columns through fiber method modeling. Journal of Research in Science, Computing, and Engineering, 4(3), 61-73.
28 Mander, J. B. (1983). Seismic design of bridge piers. Ph.D. Thesis, University of Canterbury, Christchurch, New Zealand.
29 Mander, J. B., Priestley, M. J. N., & Park, R. (1988). Theoretical stress-strain model for confined concrete. Journal of Structural Engineering, ASCE, 114(8), 1827-1849.   DOI
30 Paultre, P., & Legeron, F. (2008). Confinement reinforcement design for reinforced concrete columns. Journal of Structural Engineering, ASCE, 134(5), 738-749.   DOI
31 Rasheed, H. A., & Dinno, K. S. (1994). An efficient nonlinear analysis of RC sections. Computers & Structures, 53(3), 613-623.   DOI
32 Razvi, S., & Saatcioglu, M. (1999). Confinement model for high-strength concrete. Journal of Structural Engineering, 125(3), 281-289.   DOI
33 Richart. F. E., Brandtzaeg, A., & Brown, R. L. (1929). The failure of plain and spirally reinforced concrete in compression. Bulletin No. 190, Engineering Station. Urbana, IL: University of Illinois.