• Title/Summary/Keyword: increase treatment efficiency

Search Result 900, Processing Time 0.023 seconds

Estimation of Anaerobic Co-digestion Efficiency of Dewatered Sludge and Food waste using Thermo-Chemical Pre-Treatment (열화학적 전처리에 따른 탈수슬러지 및 음식물류폐기물의 병합혐기소화 효율 평가)

  • Lee, Wonbae;Park, Seyong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.4
    • /
    • pp.27-40
    • /
    • 2022
  • In this study, the anaerobic digestion potential and thermo-chemical pre-treatment were evaluated for efficient anaerobic co-digestion of dewatered sludge(DS) and food waste(FW). As a result, the degradable organic matter concentration and methane yield of FW were evaluated to 2.2 and 1.3 times higher than that of DS, respectively. In order to increase the amount of biogas production, it was determined that it is desirable to increase the mixing ratio of FW. The efficiency of thermo-chemical pre-treatment was evaluated for the reaction temperature, NaOH concentration, reaction time and mixture ratio. As a result of evaluation through pre-treatment efficiency and dehydration capacity, the optimum pre-treatment conditions were evaluated as follows: reaction temperature 140℃, NaOH concentration 60 meq/L, reaction time 60 min, mixture ratio 1:5(DS:FW). The gas production rate and methane yield increased 1.6 and 1.5 times, respectively, compared to before and after applying the optimum pre-treatment. Therefore, it is necessary to increase the mixing ratio of food waste for efficient anaerobic co-digestion of DS and FW. and it is necessary to increase the solubilization efficiency of waste by application of pre-treatment.

Selection of Nickel-Titanium Files according to the Clinical Procedure and Factors of File Fracture: A Narrative Review

  • Hyeon-Cheol, Kim
    • Journal of Korean Dental Science
    • /
    • v.15 no.2
    • /
    • pp.112-120
    • /
    • 2022
  • In this article, the contemporary root canal treatment procedure using nickel-titanium (NiTi) instruments was reviewed to understand the correlations between the properties of files and safety of the clinical usage. Literatures were reviewed according to the process of clinical procedure of the root canal preparation, mainly for shaping during orifice flaring, glide-path preparation, and main canal instrumentation. Considering the reasons for NiTi file fracture, clinically implacable issues and ideas were discussed to reduce the fracture risk and increase clinical efficiency of the NiTi file systems. Various kinds of NiTi file systems have their own characteristics and properties given from their geometries and heat treatments and so on. Proper selection and careful usage of the NiTi file systems may reduce the risk of file fracture and increase the efficiency of NiTi file systems. Understanding of the clinical implications from the mechanical properties and characteristics of the engine driven NiTi instruments may decrease the risk of NiTi file fractures and increase the success rate in root canal treatment.

Removal of nitrate by electrodialysis: effect of operation parameters

  • Park, Ki Young;Cha, Ho Young;Chantrasakdakul, Phrompol;Lee, Kwanyong;Kweon, Ji Hyang;Bae, Sungjun
    • Membrane and Water Treatment
    • /
    • v.8 no.2
    • /
    • pp.201-210
    • /
    • 2017
  • We investigated the effect of applied voltage and electrolyte concentration on the nitrate removal and its energy/current efficiency during the electrodialysis. The current increased as the applied voltage increased up to 30 V showing the limiting current density around 20 V. The nitrate removal efficiency (31 to 71% in 240 min) and energy consumption (11 to $77W{\cdot}h/L$) gradually increased as the applied voltage increased from 10 to 30 V. The highest current efficiency was obtained at 20 V. The increase in electrolyte concentration from 100 to 500 mM led to the dramatic increase of nitrate removal efficiency with much faster removal kinetics (100 % in 10 min).

A Study on the Laboratory Scale Ultrasound Treatment System for Methyl tert-Butyl Ether Polluted Groundwater (Methyl tert-Butyl Ether 오염 지하수 처리를 위한 실험실 규모 초음파 분해 시스템 연구)

  • Kim, Heeseok;Yang, Inho;Cho, Hyeonjo;Her, Nam Guk;Jeong, Sangjo
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.5
    • /
    • pp.747-753
    • /
    • 2010
  • A series of experiments with a laboratory scale ultrasound treatment system for MTBE polluted groundwater was performed to increase the efficiency of MTBE degradation in groundwater. This study evaluated several factors to increase the efficiency of MTBE treatment for artificial and natural groundwater. The treated volume of groundwater, ultrasound frequency and power, and pollutant concentrations have been changed to evaluate its effects on the degradation efficiency of MTBE in batch and continuous flow reactor. For the specific experimental conditions on this paper, MTBE degradations are more efficient at 580 kHz than those at 1 MHz. The efficiency of MTBE degradation is proportional to the intensity of ultrasound power per unit volume of MTBE polluted groundwater. The concentration of ions in groundwater does not much affect the efficiency of MTBE degradation. The $1^{st}$ order degradation constant of MTBE for different power per unit volume at 580 kHz shows linear relationship at same concentration. The $1^{st}$ order degradation constant for 0.1 mM MTBE solution is higher than that for 1 mM MTBE solution. These experimental results could be helpful to seek optimal conditions for relatively large volume of polluted groundwater treatment.

Improvement of Water Treatment Efficiency by Poly Aluminum Chloride Overdosing in High pH Raw Water (폴리염화알루미늄 과량주입에 의한 고(高) pH 원수의 수처리효율 개선)

  • Lim, Jaecheol;Kim, Jinkeun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.1
    • /
    • pp.39-46
    • /
    • 2009
  • A method to improve water treatment efficiency by coagulant overdosing for high pH raw water at a drinking water treatment plant (WTP) which had no pH adjusting facilities was investigated. Poly aluminum chloride (PACl) was used for coagulant, and turbidity removal efficiency was evaluated as a function of PACl dosage increases. pH and turbidity of supernatant of jar-tester were 7.10 and 0.50 NTU respectively, when the turbidity, pH, alkalinity, water temperature, conductivity of raw water were 1.75 NTU, 9.38, 46.5 mg/L, $6.4^{\circ}C$, $400{\mu}s/cm$, respectively. Turbidity of settled water was reduced from 2.18 NTU to 0.28 NTU (87% reduction) when PACl dosage was increased from 16 mg/L to 45 mg/L at a full scale WTP. This can be attributed to the recovery of coagulant efficiency by pH reduction with the increase of coagulant dose, however coagulation efficiency was reduced with the formation of Al(OH)4- by PACl addition at higher pH. Coagulant overdosing was proven to be a rapid and effective method for high pH raw water, which can be applied at drinking WTP.

Treatment of Dyeing Wastewater by Magnetic-Biological Treatment System (자화-생물처리 시스템에 의한 염색폐수의 처리)

  • Lee, Seon-Ha
    • Journal of Environmental Science International
    • /
    • v.19 no.3
    • /
    • pp.371-377
    • /
    • 2010
  • The purpose of this study is to investigate treatment efficiency in dyeing wastewater treatment by the high rate aeration system(HRA) and a combination of the HRA with magnetized wastewater treatment system(MWS). At the hydraulic retention time of 16hr, 24hr, 30hr, BOD removal efficiencies of HRA system were 93%, 96% and 98%, combination of the HRA with MWS system were 94%, 96.8% and 98.2%, respectively. In ease of COD, at the hydraulic retention time of 16hr, 24hr, 30hr, COD removal efficiencies of HRA system were 66%, 77.1% and 83.1%, combination of the HRA with MWS system were 70.2%, 80.1% and 86.6%, respectively. The comparison of the HRA and combination of the HRA with MWS, effluent BOD of the former was 22.7mg/${\ell}$ and the latter was 19.4mg/${\ell}$, theretore biological treatment efficiency identified to increase by the MWS.

Nanowastes treatment in environmental media

  • Kim, Younghun
    • Environmental Analysis Health and Toxicology
    • /
    • v.29
    • /
    • pp.15.1-15.7
    • /
    • 2014
  • Objectives This paper tried to review a recent research trend for the environmental exposure of engineered nanomaterials (ENMs) and its removal efficiency in the nanowaste treatment plants. Methods The studies on the predicted environmental concentrations (PEC) of ENMs obtained by exposure modeling and treatment (or removal) efficiency in nanowaste treatment facilities, such as wastewater treatment plant (WTP) and waste incineration plant (WIP) were investigated. The studies on the landfill of nanowastes also were investigated. Results The Swiss Federal Laboratories for Materials Science and Technology group has led the way in developing methods for estimating ENM production and emissions. The PEC values are available for surface water, wastewater treatment plant effluents, biosolids, sediments, soils, and air. Based on the PEC modeling, the major routes for the environmental exposure of the ENMs were found as WTP effluents/sludge. The ENMs entered in the WTP were 90-99% removed and accumulated in the activated sludge and sludge cake. Additionally, the waste ash released from the WIP contain ENMs. Ultimately, landfills are the likely final destination of the disposed sludge or discarded ENMs products. Conclusions Although the removal efficiency of the ENMs using nanowaste treatment facilities is acceptable, the ENMs were accumulated on the sludge and then finally moved to the landfill. Therefore, the monitoring for the ENMs in the environment where the WTP effluent is discharged or biomass disposed is required to increase our knowledge on the fate and transport of the ENMs and to prevent the unintentional exposure (release) in the environment.

Nutrient Removal in an Advanced Treatment Process using BIO-CLOD (BIO-CLOD를 이용한 고도처리공정에서의 영양염류 제거)

  • Park, Wan-Cheol;Lee, Mi-Ae;Sung, Il-Wha
    • Journal of Environmental Health Sciences
    • /
    • v.40 no.4
    • /
    • pp.322-329
    • /
    • 2014
  • Objectives: The purpose of this study was to investigate the effect of BIO-CLOD on advanced wastewater treatment for enhanced removal efficiency and meeting the stringent discharge water requirements of wastewater treatment plants. Methods: Two experimental apparatuses consisting of anaerobic, anoxic and aeration tanks were operated. One included a BIO-CLOD cultivation tank. Organic and nutrient parameters and removal efficiency were analyzed by pH, BOD, CODcr, SS, T-N and T-P. Results: The average removal efficiencies of BOD, COD and SS from the apparatus with BIO-CLOD tank installation were 95.5%, 88.6% and 92.9%, respectively, and these were higher than the results from the apparatus without BIO-CLOD. The average TP removal efficiency with BIO-CLOD tank marked 56.0%, higher than the 47.3% from the apparatus without one. BIO-CLOD showed a higher performance for TN removal at 49.6%, compared to the result without BIO-CLOD of 34.3% Conclusion: By reaction with BIO-CLOD, ammonia removal was effective in the aeration tank, as was phosphorus release in the anaerobic tank. Phosphorus luxury uptake and nitrification in aeration tank proceeded smoothly. The application of BIO-CLOD can improve the decrease of odor and settleability of activated sludge in a wastewater treatment plant, as well as increase the removal efficiency of organic and nutrient materials in water.

Treatment of Organic Wastewater by the Anaerobic Fixed-Film Process (혐기성 생물막법에 의한 유기성 배수의 처리)

  • 김용대;정경훈
    • Journal of Environmental Health Sciences
    • /
    • v.17 no.2
    • /
    • pp.41-47
    • /
    • 1991
  • A study on the effects of volumetric loading rate, surface loading rate and hydraulic. retention time (HRT) for the anaerobic treatment was conducted with the anaerobic fixed-film process using synthetic wastewater at lower temperature than that of conventional anaerobic treatment. The results are as follows 1. Alkalinity and pH value decreased as the hydraulic retention time increased 2. Increase of the volumetric lodaing rate led to increasl of effluent COD concentration and decrease of COD removal efficiency. 3. The removed volumetric loading rate increased linearly according to the increase of the volumrtric loading rate. 4. Similarly, the linear increase of the removed surface loading rate was noticed with an increase of the surface loading rate.

  • PDF

Effect of Sonication and vir Genes on Transient Gene Expression in Agrobacterium-Mediated Transformation (Agrobacterium을 이용한 형질전환에서 sonication과 vir 유전자들의 효과)

  • 이병무
    • Journal of Life Science
    • /
    • v.11 no.4
    • /
    • pp.316-320
    • /
    • 2001
  • Sonication tremendously improves the efficiency of Agrobacterium infection by introducing small and uniform fissures and channels throughout the targeted tissue. Using shoot tips of cotton as explants, the effect of sonication treatment and virulence genes in Agrobacterium tumefaciens on transformation efficiency was investigated. The pat gene which encodes resistance to the herbicide, glufosinate, was used as a selectable marker. Transformation efficiency was evaluated on th basis of survival rates of cocultivated shoot tips on selection medium containing 2.5 mg/l gulfosinate-ammonium(ppt) adn 25. mg/l Clavamax. Sonication from 5 to 15 second has a positive effect on shoop tip survival. However, whil virE as well as virG or vir GN54D showed an enhancement in transformation efficiency, virE,. virG resulted in the most significant enhancement. Overall, the combination of additional virG/virE gene and sonication treatment resulted in the most significant increase in transformation efficiency.

  • PDF