Browse > Article
http://dx.doi.org/10.17137/korrae.2022.30.4.27

Estimation of Anaerobic Co-digestion Efficiency of Dewatered Sludge and Food waste using Thermo-Chemical Pre-Treatment  

Lee, Wonbae (Bioresource Center, Institute for Advanced Engineering)
Park, Seyong (Bioresource Center, Institute for Advanced Engineering)
Publication Information
Journal of the Korea Organic Resources Recycling Association / v.30, no.4, 2022 , pp. 27-40 More about this Journal
Abstract
In this study, the anaerobic digestion potential and thermo-chemical pre-treatment were evaluated for efficient anaerobic co-digestion of dewatered sludge(DS) and food waste(FW). As a result, the degradable organic matter concentration and methane yield of FW were evaluated to 2.2 and 1.3 times higher than that of DS, respectively. In order to increase the amount of biogas production, it was determined that it is desirable to increase the mixing ratio of FW. The efficiency of thermo-chemical pre-treatment was evaluated for the reaction temperature, NaOH concentration, reaction time and mixture ratio. As a result of evaluation through pre-treatment efficiency and dehydration capacity, the optimum pre-treatment conditions were evaluated as follows: reaction temperature 140℃, NaOH concentration 60 meq/L, reaction time 60 min, mixture ratio 1:5(DS:FW). The gas production rate and methane yield increased 1.6 and 1.5 times, respectively, compared to before and after applying the optimum pre-treatment. Therefore, it is necessary to increase the mixing ratio of food waste for efficient anaerobic co-digestion of DS and FW. and it is necessary to increase the solubilization efficiency of waste by application of pre-treatment.
Keywords
Dewatered sludge; Food waste; Anaerobic co-digestion; Pre-treatment;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yuan, Y., Bian, A., Zhang, L., Chen, Z., Zhou, F., Ye, F., Jin, T., Pan, M., Chen, T., Yan, J., Wang, A., Li, Z. and Ding, C., "Thermal-alkali and enzymes for efficient biomethane production from co-digestion of corn straw and cattle manure", BioResources, 14(3), pp. 5422~5437. (2019).   DOI
2 Ministry of Environment, "National waste generation and treatment status 2020". (2021).
3 Liu, Y., Lv, Y., Cheng, H., Zou, L., Li, Y. and Liu, J., "High-efficiency anaerobic co-digestion of food waste and mature leachate using expanded granular sludge blanket reactor", Bioresour. Technol., 362, p. 127847. (2022).   DOI
4 Yadav, M., Joshi, C., Paritosh, K., Thakur, J., Pareek, N., Masakapalli, S. K. and Vivekanand, V., "Organic waste conversion through anaerobic digestion: A critical insight into the metabolic pathways and microbial interactions", Metabolic Engineering, 69, pp. 323~337. (2022).   DOI
5 Naran, E., Toor, U. A. and Kim, D., "Effect of pretreatment and anaerobic co-digestion of food waste and waste activated sludge on stabilization and methane production", Int Biodeterior. Biodegrad., 113, pp. 17~21. (2016).   DOI
6 Park, J., Park, S. and Kim, M., "Anaerobic degradation of amino acids generated from the hydrolysis of sewage sludge", Environ. Technol., 35(9), pp. 1133~1139. (2014).   DOI
7 Peterson, A., Lachance, R. and Tester, J., "Kinetic Evidence of the Maillard Reaction in Hydrothermal Biomass Processing: Glucose-Glycine Interactions in High-Temperature, High-Pressure Water", Ind. Eng. Chem. Res., 49(5), pp. 2107~2117. (2010).   DOI
8 APHA, Standard Methods for the Examination of Water and Wastewater, 21st ed., American Public Health Association, Washington DC, USA. (2005).
9 Ariunbaatar, J., Panico, A., Esposito, G., Pirozzi, F. and Lens, P.N.L., "Pretreatment methods to enhance anaerobic digestion of organic solid waste", Appl. Energy., 123, pp. 143~156. (2014).   DOI
10 Hoekman, S. K., Broch, A. and Robbins, C., "Hydrothermal carbonization (HTC) of lignocellulosic biomass", Energy Fuels, 25(4), pp. 1802~1810. (2011).   DOI
11 Jeong, T.-Y., Vha, G.-C., Choi, S. S. and Jeon, C., "Evaluation of methane production by the thermal pre-treatment of waste activated sludge in an anaerobic digester", Journal of Indian Engineering Chemical, 13, pp. 856~863. (2007).
12 Boyle, W. C., "Energy recovery from sanitary landfills-a review", In Schlegel, H.G., Barnea, J. (Eds.), Microbial Energy Conversion, Pergamon Press, Oxford, pp. 19~138. (1976).
13 Lix, X., Wang, W., Shi, Z. L., Gao, X., Qiao, W. and Zhou, Y., "Pilot-scale anaerobic co-digestion of municipal biomass waste and waste activated sludge in China: Effect of organic loading rate", Waste Manage., 32(11), pp. 2056~2060. (2012).   DOI
14 Carrere, H., Claire, B., Delphine, C. and Philippe, J. P., "Impact of initial biodegradability on sludge anaerobic digestion enhancement by thermal pretreatment", J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng., 43(13), pp. 1551~1555. (2008).   DOI
15 Naran, E., Toor, U. A. and Kim, D.-J., "Effect of pretreatment and anaerobic co-digestion of food waste and waste activated sludge on stabilization and methane production", Int. J. Biodeterioat. Biodegrad., 113, pp. 17~21. (2016).   DOI
16 Campo, G., Cerutti, A., Zanetti, M., Scibilia, G., Lorenzi, E. and Ruffino, B., "Enhancement of waste activated sludge (WAS) anaerobic digestion by means of pre-and intermediate treatments. Technical and economic analysis at a full-scale WWTP", J. Environ. Manag., 216, pp. 372~382. (2018).   DOI
17 Cho, H., Park, S., Ha, J. and Park, J., "An innovative sewage sludge reduction by using a combined mesophilic anaerobic and thermophilic aerobic process with thermal- alkaline treatment and sludge recirculation", J. Environ. Manag., 129(15), pp. 274~282. (2013).   DOI
18 Liu, X., Xu, Q., Wang, D., Yang, Q., Wu, Y., Li, Y., Fu, Q., Yang, F., Liu, Y., Ni, B., Wang, Q. and Li, X., "Thermal-alkaline pretreatment of polyacrylamide flocculated waste activated sludge: process optimization and effects on anaerobic digestion and poly-acrylamide degradation", Bioresour. Technol., 281, pp. 158~167. (2019).   DOI
19 Speece, R. E., Anaerobic biothechnology and odor/corrosion control for municipalities and industries, Archae Press, Nashville, Tennessee. (2008).
20 Zhang, S., Guo, H., Du, L., Liang, J., Lu, X., Li, N. and Zhang, K., "Influence of NaOH and thermal pretreatment on dewatered activated sludge solubilisation and subsequent anaerobic digestion: focused on high-solid state", Bioresour. Technol., 185, pp. 171~177. (2015).   DOI
21 Yang, D., Hu, C., Dai, L., Liu, Z., Dong, B. and Dai, X., "Post-thermal hydrolysis and centrate recirculation for enhancing anaerobic digestion of sewage sludge", Waste Manag., 92, pp. 39~48. (2019).   DOI