DOI QR코드

DOI QR Code

Estimation of Anaerobic Co-digestion Efficiency of Dewatered Sludge and Food waste using Thermo-Chemical Pre-Treatment

열화학적 전처리에 따른 탈수슬러지 및 음식물류폐기물의 병합혐기소화 효율 평가

  • Lee, Wonbae (Bioresource Center, Institute for Advanced Engineering) ;
  • Park, Seyong (Bioresource Center, Institute for Advanced Engineering)
  • 이원배 (고등기술연구원 바이오자원순환센터) ;
  • 박세용 (고등기술연구원 바이오자원순환센터)
  • Received : 2022.10.04
  • Accepted : 2022.11.02
  • Published : 2022.12.30

Abstract

In this study, the anaerobic digestion potential and thermo-chemical pre-treatment were evaluated for efficient anaerobic co-digestion of dewatered sludge(DS) and food waste(FW). As a result, the degradable organic matter concentration and methane yield of FW were evaluated to 2.2 and 1.3 times higher than that of DS, respectively. In order to increase the amount of biogas production, it was determined that it is desirable to increase the mixing ratio of FW. The efficiency of thermo-chemical pre-treatment was evaluated for the reaction temperature, NaOH concentration, reaction time and mixture ratio. As a result of evaluation through pre-treatment efficiency and dehydration capacity, the optimum pre-treatment conditions were evaluated as follows: reaction temperature 140℃, NaOH concentration 60 meq/L, reaction time 60 min, mixture ratio 1:5(DS:FW). The gas production rate and methane yield increased 1.6 and 1.5 times, respectively, compared to before and after applying the optimum pre-treatment. Therefore, it is necessary to increase the mixing ratio of food waste for efficient anaerobic co-digestion of DS and FW. and it is necessary to increase the solubilization efficiency of waste by application of pre-treatment.

본 연구에서는, 탈수슬러지 및 음식물류폐기물의 효율적인 병합혐기성소화를 위해 폐기물의 혐기성소화 가능성 및 열화학적 전처리 방법에 대해 평가하였다. 폐기물의 혐기성소화 가능성 평가 결과, 음식물류폐기물이 탈수슬러지에 비해 혐기성미생물에 의해 분해 가능한 유기물 농도 및 methane yield가 각각 2.2배, 1.3배 더 높게 평가되었다. 바이오가스 발생량의 증대를 위해서는, 음식물류폐기물의 혼합비율을 증가시키는 것이 필요할 것으로 판단되었으며, 열화학적 전처리 효율은 반응온도, NaOH 주입량, 반응시간, 혼합비율 조건에 대해 평가하였다. 전처리 효율 및 탈수능을 통해 평가한 결과, 최적 열화학적 가용화 전처리 조건은 반응온도 140℃, NaOH 주입량 60 meq/L, 반응시간 60 min, 혼합비율 1:5로 평가되었다. 최적 열화학적 가용화 전처리 조건 적용 전과 후의 methane yield를 비교한 결과, 전처리를 적용한 경우에서, 가스발생속도 및 methane yield가 각각 1.6, 1.5배 증가하였다. 따라서, 탈수슬러지 및 음식물류폐기물의 효율적인 병합혐기성소화를 위해서는 음식물류폐기물의 혼합비율을 증가시키며, 폐기물의 전처리를 통해 가용화 효율을 증대시키는 것이 필요하다고 판단된다.

Keywords

Acknowledgement

본 연구는 산업통상자원부(MOTIE)와 한국에너지기술평가원(KETEP)의 지원을 받아 수행한 연구 과제입니다. (No. 20183010092750) 본 연구는 한국환경산업기술원의 지원을 받아 수행한 연구과제입니다. (No. 2020003160018)

References

  1. Ministry of Environment, "National waste generation and treatment status 2020". (2021).
  2. Cho, H., Park, S., Ha, J. and Park, J., "An innovative sewage sludge reduction by using a combined mesophilic anaerobic and thermophilic aerobic process with thermal- alkaline treatment and sludge recirculation", J. Environ. Manag., 129(15), pp. 274~282. (2013). https://doi.org/10.1016/j.jenvman.2013.07.009
  3. Liu, Y., Lv, Y., Cheng, H., Zou, L., Li, Y. and Liu, J., "High-efficiency anaerobic co-digestion of food waste and mature leachate using expanded granular sludge blanket reactor", Bioresour. Technol., 362, p. 127847. (2022). https://doi.org/10.1016/j.biortech.2022.127847
  4. Yadav, M., Joshi, C., Paritosh, K., Thakur, J., Pareek, N., Masakapalli, S. K. and Vivekanand, V., "Organic waste conversion through anaerobic digestion: A critical insight into the metabolic pathways and microbial interactions", Metabolic Engineering, 69, pp. 323~337. (2022). https://doi.org/10.1016/j.ymben.2021.11.014
  5. Lix, X., Wang, W., Shi, Z. L., Gao, X., Qiao, W. and Zhou, Y., "Pilot-scale anaerobic co-digestion of municipal biomass waste and waste activated sludge in China: Effect of organic loading rate", Waste Manage., 32(11), pp. 2056~2060. (2012). https://doi.org/10.1016/j.wasman.2012.03.003
  6. Naran, E., Toor, U. A. and Kim, D., "Effect of pretreatment and anaerobic co-digestion of food waste and waste activated sludge on stabilization and methane production", Int Biodeterior. Biodegrad., 113, pp. 17~21. (2016). https://doi.org/10.1016/j.ibiod.2016.04.011
  7. Yuan, Y., Bian, A., Zhang, L., Chen, Z., Zhou, F., Ye, F., Jin, T., Pan, M., Chen, T., Yan, J., Wang, A., Li, Z. and Ding, C., "Thermal-alkali and enzymes for efficient biomethane production from co-digestion of corn straw and cattle manure", BioResources, 14(3), pp. 5422~5437. (2019). https://doi.org/10.15376/biores.14.3.5422-5437
  8. Liu, X., Xu, Q., Wang, D., Yang, Q., Wu, Y., Li, Y., Fu, Q., Yang, F., Liu, Y., Ni, B., Wang, Q. and Li, X., "Thermal-alkaline pretreatment of polyacrylamide flocculated waste activated sludge: process optimization and effects on anaerobic digestion and poly-acrylamide degradation", Bioresour. Technol., 281, pp. 158~167. (2019). https://doi.org/10.1016/j.biortech.2019.02.095
  9. Park, J., Park, S. and Kim, M., "Anaerobic degradation of amino acids generated from the hydrolysis of sewage sludge", Environ. Technol., 35(9), pp. 1133~1139. (2014). https://doi.org/10.1080/09593330.2013.863951
  10. Speece, R. E., Anaerobic biothechnology and odor/corrosion control for municipalities and industries, Archae Press, Nashville, Tennessee. (2008).
  11. Boyle, W. C., "Energy recovery from sanitary landfills-a review", In Schlegel, H.G., Barnea, J. (Eds.), Microbial Energy Conversion, Pergamon Press, Oxford, pp. 19~138. (1976).
  12. APHA, Standard Methods for the Examination of Water and Wastewater, 21st ed., American Public Health Association, Washington DC, USA. (2005).
  13. Ariunbaatar, J., Panico, A., Esposito, G., Pirozzi, F. and Lens, P.N.L., "Pretreatment methods to enhance anaerobic digestion of organic solid waste", Appl. Energy., 123, pp. 143~156. (2014). https://doi.org/10.1016/j.apenergy.2014.02.035
  14. Hoekman, S. K., Broch, A. and Robbins, C., "Hydrothermal carbonization (HTC) of lignocellulosic biomass", Energy Fuels, 25(4), pp. 1802~1810. (2011). https://doi.org/10.1021/ef101745n
  15. Peterson, A., Lachance, R. and Tester, J., "Kinetic Evidence of the Maillard Reaction in Hydrothermal Biomass Processing: Glucose-Glycine Interactions in High-Temperature, High-Pressure Water", Ind. Eng. Chem. Res., 49(5), pp. 2107~2117. (2010). https://doi.org/10.1021/ie9014809
  16. Zhang, S., Guo, H., Du, L., Liang, J., Lu, X., Li, N. and Zhang, K., "Influence of NaOH and thermal pretreatment on dewatered activated sludge solubilisation and subsequent anaerobic digestion: focused on high-solid state", Bioresour. Technol., 185, pp. 171~177. (2015). https://doi.org/10.1016/j.biortech.2015.02.050
  17. Jeong, T.-Y., Vha, G.-C., Choi, S. S. and Jeon, C., "Evaluation of methane production by the thermal pre-treatment of waste activated sludge in an anaerobic digester", Journal of Indian Engineering Chemical, 13, pp. 856~863. (2007).
  18. Carrere, H., Claire, B., Delphine, C. and Philippe, J. P., "Impact of initial biodegradability on sludge anaerobic digestion enhancement by thermal pretreatment", J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng., 43(13), pp. 1551~1555. (2008). https://doi.org/10.1080/10934520802293735
  19. Yang, D., Hu, C., Dai, L., Liu, Z., Dong, B. and Dai, X., "Post-thermal hydrolysis and centrate recirculation for enhancing anaerobic digestion of sewage sludge", Waste Manag., 92, pp. 39~48. (2019). https://doi.org/10.1016/j.wasman.2019.04.044
  20. Naran, E., Toor, U. A. and Kim, D.-J., "Effect of pretreatment and anaerobic co-digestion of food waste and waste activated sludge on stabilization and methane production", Int. J. Biodeterioat. Biodegrad., 113, pp. 17~21. (2016). https://doi.org/10.1016/j.ibiod.2016.04.011
  21. Campo, G., Cerutti, A., Zanetti, M., Scibilia, G., Lorenzi, E. and Ruffino, B., "Enhancement of waste activated sludge (WAS) anaerobic digestion by means of pre-and intermediate treatments. Technical and economic analysis at a full-scale WWTP", J. Environ. Manag., 216, pp. 372~382. (2018). https://doi.org/10.1016/j.jenvman.2017.05.025