• 제목/요약/키워드: inconel alloy

검색결과 127건 처리시간 0.025초

극저온 환경에 적용되는 INCONEL 718합금의 Gas Tungsten Arc Welding 기계적 특성 평가 (Mechanical Properties Evaluation of Gas Tungsten Arc Welding for INCONEL 718 alloy apply to Cryogenic Condition)

  • 김기홍;문인상;문일윤;이병호
    • 한국재료학회지
    • /
    • 제19권12호
    • /
    • pp.692-698
    • /
    • 2009
  • Inconel 718 alloy has excellent mechanical properties at room temperature, high temperature and cryogenic conditions. UTS of base metal is about 900MPa at room temperature; this is increased up to 1300MPa after heat treatment & aging-hardening. Mechanical properties of Inconel 718 Alloy were similar to those shown in the the results for tensile test; mechanical properties of Inconel 718 alloy's GTAW were similar to those of base metal's properties at room temperature. Mechanical properties at cryogenic conditions were better than those at room temperature. Heat-treated Inconel 718, non- filler metal GTAW on Inconel 718 and GTAW used filler metal on Inconel 718's UTS was 1400MPa at cryogenic condition. As a result, the excellent mechanical properties of Inconel 718 alloy under cryogenic conditions was proved through tensile tests under cryogenic conditions. In addition, weldability of Inconel 718 alloy under cryogenic conditions was superior to that of its base-metal. In this case, UTS of hybrid joint (IS-G) at -100$^{\circ}C$ was 900MPa. Consequently, UTS of Inconel 718 alloy is estimated to increase from -100$^{\circ}C$ to a specific temperature below -100$^{\circ}C$. Therefore, Inconel 718 alloy is considered a pertinent material for the production of Lox Pipe under cryogenic conditions.

인코넬 합금의 미세조직과 기계적 특성에 미치는 냉각속도 영향 (Effect of Cooling Rates on Mechanical Properties and Microstructure of Inconel Alloys)

  • 박노경;이호성;채영석
    • 한국재료학회지
    • /
    • 제17권10호
    • /
    • pp.555-559
    • /
    • 2007
  • The mechanical properties and microstructure of Inconel 690 and 600 alloys with various cooling rates were investigated. Optical microscopy and scanning electron microscopy observations indicated that in case of the cooling rate of $0.5^{\circ}C/min$, discontinuous carbides along the grain boundaries were formed and when the cooling rate was $10^{\circ}C/min$, continuous carbides were formed in Inconel 690 and 600 alloys. For the annealed Inconel 690 alloy with high Cr content, a lot of annealing twins, which led the preferential growth of (111) planes, were observed. However, the annealed Inconel 600 alloy with low Cr content showed a few annealing twins and the preferential growth of (200) planes. Inconel 600 alloy had a larger value of ultimate tensile strength (UTS) than Inconel 690 alloy.

Magnetic NDE for Sensitization of Inconel 600 Alloy

  • Kikuchi, Hiroaki;Sumimoto, Takaki;Kamada, Yasuhiro;Kobayashi, Satoru
    • Journal of Magnetics
    • /
    • 제18권3호
    • /
    • pp.348-351
    • /
    • 2013
  • Inconel 600 alloy, Ni base alloy, is widely used for steam generator tubings where sensitization occurs at grain boundaries and sensitization will induce tubing failures. This alloy has usually paramagnetic property, however, it transforms into ferromagnetic property along grain boundaries when sensitization occurs: this means NDE using magnetism for sensitization is possible. Therefore, in this study, Inconel 600 alloys were heat treated at 873 K from 0 to 400 hours so as to generate sensitization and their magnetic properties were investigated in detail. The saturation and the residual magnetization increase with increasing heat treatment time and take a maximum. On the other hand, the coercive force decreases with the increase in time of heat treatment. We confirmed that characteristics at only grain boundaries change into ferromagnetic phase by a MFM observation. As a trial for industrial application, heat treated Inconel 600 alloy was scanned by a magnetic field sensor, and the variations in magnetization were obtained nondestructively. The results indicate a feasibility of magnetic NDE for sensitization of Inconel 600 alloy.

국내 증기발생기 전열관 마열에 대한 실험적 연구 (Experimental studies on the fretting wear of domestic steam generator tubes)

  • 이영호;김형규;김인섭
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 제35회 춘계학술대회
    • /
    • pp.304-309
    • /
    • 2002
  • Fretting wear test in room temperature water was performed to evaluate the wear coefficient of Inconel 600,690 (Pressurized Water Reactor, PWR) and Alloy 800 (CANadian DeuteriumUranium, CANDU) steam generator (SG) tubes against ferritic and martensitic stainless steels. The main focus is to compare the wear behaviors between Alloy 800 and Inconel alloys. Test conditions are $10{\sim}30N$ of normal load, $200{\sim}450{\mu}m$ of sliding amplitude and 30Hz of frequency. The result indicated that the wear rate of Alloy 800 was higher than those of Inconel 690 at various test condition such as normal loads, sliding amplitudes etc. From the results of SEM observation, there was little evidence of plastic deformation layer that were dominantly formed on the worn surfaces of Inconel 690. Also, wear particles in Alloy 800 were released from contacting asperities deformed by severe plastic flow during fretting wear. Main cause of wear rate between Alloy 800 and Inconel 690 may be due to the difference of hardness between martensitic and ferritic stainless steel. The wear rate and wear mechanism of two tubes in room temperature water are discussed.

  • PDF

인코넬 690 합금의 크리프거동 (Creep Behaviours of Inconel 690 Alloy)

  • 황경충;윤종호;최재하;김성청
    • 한국공작기계학회논문집
    • /
    • 제11권4호
    • /
    • pp.54-61
    • /
    • 2002
  • Inconel 690 alloy has widely been used in power plant and high temperature facilities because it has high thermal resistance and toughness. But we have little design data about the creep behaviors of the alloy. Therefore, in this study, an apparatus has been designed and built for conducting creep tests under constant load conditions. A series of creep tests on Inconel 690 alloy have been performed to get the basic design data and life prediction of inconel products and we have gotten the following results. First, the stress exponents decrease as the test temperatures increase. Secondly, the creep activation energy gradually decreases as the stresses become bigger. thirdly, the constant of Larson-Miller Parameters on this alloy is estimated about 10. And last the fractographs at the creep rupture show both the ductile and the brittle fracture according to the creep conditions.

고속 볼엔드밀링에서 가공조건에 따른 초내열합금 (Inconel 718)의 가공특성 평가 (Machining Characteristics Evaluation of Super Heat-resistant Alloy(Inconel 718) According to Cutting Conditions in High Speed Ball End-milling)

  • 권해웅;김정석;강익수;김기태
    • 한국생산제조학회지
    • /
    • 제19권1호
    • /
    • pp.1-6
    • /
    • 2010
  • Inconel 718 alloy has been applied to high temperature, high load and corrosion resistant environments due to its superior properties. However, This alloy is a difficult-to-cut nickel-based superalloy and the chipping or notch wear is mainly generated on the cutting edge of the tool. In this study, the machinability of Inconel 718 is investigated to improve tool life under various cutting conditions with TiCN-based coated ball-end mills. The cutting conditions can be suggested to improve both the tool life and machined surface quality in Inconel 718 high speed machining.

소형펀치 시험법을 이용한 INCONEL Alloy 617의 수소취화거동 평가 (Evaluation of Hydrogen Embrittlement Behavior in INCONEL Alloy 617 by Small Punch Test)

  • 서현욱;마영화;윤기봉
    • 한국수소및신에너지학회논문집
    • /
    • 제21권4호
    • /
    • pp.340-345
    • /
    • 2010
  • For the conversion into hydrogen society, not only studying facilities of hydrogen production, storage, transportation and charging system but also developing technique of ensuring safety are essentially needed. Hence, for the first step of that, evaluated the hydrogen embrittlement of Inconel alloy 617, Ni-based super heat-resisting alloy, by small punch test. Prepared the various specimens through changing electrochemical charging time and measured the toughness degradation of the specimens by small-punch test. The analysis of hydrogen embrittlement behavior were carried out by investigating the fractured surface of specimens. This study has significance on revealing mechanism of hydrogen embrittlement behavior and the factor affecting hydrogen embrittlement in the future study.

극저온 환경에 적용되는 INCONEL 718합금의 GTAW 기계적 특성 평가 (Mechanical Properties Evaluation of GTAW for INCONEL 718 alloy apply to Cryogenic Condition)

  • 김기홍;문인상;이병호;이수용
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 제33회 추계학술대회논문집
    • /
    • pp.619-622
    • /
    • 2009
  • INCONEL 718합금은 상온, 고온 및 저온환경에서 기계적 특성이 아주 우수하다. 상온에서의 모재 강도는 약 900MPa이며, 열처리 후 시효경화처리에 의해 강도가 약 1300MPa까지 증가한다. 이러한 INCONEL 718합금의 기계적 특성은 시험결과에서도 유사한 값을 나타내었고, GTAW 용접부의 상온 기계적 특성도 모재보다 우수한 강도를 나타내었다. 또한 저온에서의 기계적 특성은 모든 시험조건에서 상온보다 높은 강도를 나타내었으며, 열처리 모재시편과 용접시편은 1400MPa에 달하는 고강도를 나타내었다. 이러한 결과를 바탕으로 INCONEL 718합금의 저온 기계적 특성이 우수한 것을 증명하였고, 용접성 또한 모재의 특성과 같이 상온 및 저온 특성이 우수한 것을 알 수 있었다. INCONEL 718 합금과 STS 316L의 이종접합의 경우에도 $-100^{\circ}C$환경의 인장강도가 상온보다 300MPa 이상 증가하는 것을 알 수 있었다. 따라서, INCONEL 718합금은 $100^{\circ}C$이하부터 일정온도까지는 기계적 특성이 계속 증가 할 것으로 사료되며, 극저온 고압 상태로 공급되는 산화제 배관 제작에 적합한 소재로 판단된다.

  • PDF

Ti-6Al-4V 합금 기지 위에 FGM 방식으로 적층제조 된 Inconel 718의 접합 특성 분석 (Joint Properties of Inconel 718 Additive Manufactured on Ti-6Al-4V by FGM method)

  • 박찬웅;박진웅;정기채;이세환;김성훈;김정한
    • 한국분말재료학회지
    • /
    • 제28권5호
    • /
    • pp.417-422
    • /
    • 2021
  • In the present work, Inconel 718 alloy is additively manufactured on the Ti-6Al-4V alloy, and a functionally graded material is built between Inconel 718 and Ti-6Al-4V alloys. The vanadium interlayer is applied to prevent the formation of detrimental intermetallic compounds between Ti-6Al-4V and Inconel 718 by direct joining. The additive manufacturing of Inconel 718 alloy is performed by changing the laser power and scan speed. The microstructures of the joint interface are characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and micro X-ray diffraction. Additive manufacturing is successfully performed by changing the energy input. The micro Vickers hardness of the additive manufactured Inconel 718 dramatically increased owing to the presence of the Cr-oxide phase, which is formed by the difference in energy input.

고분자 전해질 연료전지 금속 분리판용 금속의 염화물 농도에 따른 전기화학적 특성 연구 (Investigation on Electrochemical Characteristics of Metallic Bipolar Plates with Chloride Concentrations for PEMFC)

  • 신동호;김성종
    • Corrosion Science and Technology
    • /
    • 제20권6호
    • /
    • pp.347-360
    • /
    • 2021
  • Currently, the demand for eco-friendly energy sources is high, which has prompted research on polymer electrolyte membrane fuel cells. Both aluminum alloys and nickel alloys, which are commonly considered as materials of bipolar plates in fuel cells, oxide layers formed on the metal surface have excellent corrosion resistance. In this research, the electrochemical characteristics of 6061-T6 aluminum alloy and Inconel 600 were investigated with chloride concentrations in an acid environment that simulated the cathode condition of the PEMFC. After potentiodynamic polarization experiments, Tafel analysis and surface analysis were performed. Inconel 600 presented remarkably good corrosion resistance under all test conditions. The corrosion current density of 6061-T6 aluminum alloy was significantly higher than that of Inconel 600 under all test conditions. Also, 6061-T6 aluminum alloy and Inconel 600 presented uniform corrosion and intergranular corrosion, respectively. The Ni, Cr, and Fe, which are the main chemical compositions of Inconel 600, are higher than Al in the electromotive force series. And a double oxide film of NiO-Cr2O3, which is more stable than Al2O3, is formed. Thus, the corrosion resistance of Inconel 600 is better.