Browse > Article
http://dx.doi.org/10.14773/cst.2021.20.6.347

Investigation on Electrochemical Characteristics of Metallic Bipolar Plates with Chloride Concentrations for PEMFC  

Shin, Dong-Ho (Graduate school, Mokpo national maritime university)
Kim, Seong-Jong (Division of marine engineering, Mokpo national maritime university)
Publication Information
Corrosion Science and Technology / v.20, no.6, 2021 , pp. 347-360 More about this Journal
Abstract
Currently, the demand for eco-friendly energy sources is high, which has prompted research on polymer electrolyte membrane fuel cells. Both aluminum alloys and nickel alloys, which are commonly considered as materials of bipolar plates in fuel cells, oxide layers formed on the metal surface have excellent corrosion resistance. In this research, the electrochemical characteristics of 6061-T6 aluminum alloy and Inconel 600 were investigated with chloride concentrations in an acid environment that simulated the cathode condition of the PEMFC. After potentiodynamic polarization experiments, Tafel analysis and surface analysis were performed. Inconel 600 presented remarkably good corrosion resistance under all test conditions. The corrosion current density of 6061-T6 aluminum alloy was significantly higher than that of Inconel 600 under all test conditions. Also, 6061-T6 aluminum alloy and Inconel 600 presented uniform corrosion and intergranular corrosion, respectively. The Ni, Cr, and Fe, which are the main chemical compositions of Inconel 600, are higher than Al in the electromotive force series. And a double oxide film of NiO-Cr2O3, which is more stable than Al2O3, is formed. Thus, the corrosion resistance of Inconel 600 is better.
Keywords
PEMFC; Metallic bipolar plate; Metals; NaCl concentration; Electrochemical characteristics;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 R. F. Silva, D. Franchi, A. Leone, L. Pilloni, A. Masci, and A. Pozio, Surface conductivity and stability of metallic bipolar plate materials for polymer electrolyte fuel cells, Electrochimica. Acta, 51, 3592 (2006). Doi: https://doi.org/10.1016/j.electacta.2005.10.015   DOI
2 A. U. Malic, P. C. M. Kutty, N. A. Siddiqi, N. Andijani, and S. Ahmed, The influence of pH and chloride concentration on the corrosion behaviour of AISI 316L steel in aqueous solutions, Corrosion Science, 33, 1809 (1992). Doi: https://doi.org/10.1016/0010-938X(92)90011-Q   DOI
3 L. V. Biert, M. Godjevac, K. Visser, and P. V. Aravind, A review of fuel cell systems for maritime applications, Journal of Power Sources, 327, 345 (2016). Doi: https://doi.org/10.1016/j.jpowsour.2016.07.007   DOI
4 K. M. Kim, S. U. Koh, and K. Y. Kim, Effect of Tantalum and Lanthanum Addition on Electrochemical Property of Austenitic Stainless Steel in a Simulated PEMFC Environment, Corrosion Science and Technology, 7, 338 (2008). Doi https://scienceon.kisti.re.kr/srch/selectPORSrchArticle.do?cn=JAKO200821161843187
5 D. A. Jones, Principles and prevention of corrosion, pp. 267 - 281, Pearson (1992).
6 C. R. Clayton and Y. C. Lu, A Bipolar Model of the Passivity of Stainless Steel: The Role of Mo Addition, Journal of The Electrochemical Society, 133, 2465 (1986). Doi: https://doi.org/10.1149/1.2108451   DOI
7 G. T. Burstein, and S. P. Vines, Repetitive Nucleation of Corrosion Pits on Stainless Steel and the Effects of Surface Roughness, Journal of The Electrochemical Society, 148, 504 (2001). Doi: https://doi.org/10.1149/1.1416503   DOI
8 ASTM, G46-94, Standard Guide for Examination and Evaluation of PittingCorrosion, p. 5, ASTM International, West Conshohocken, PA (2005).
9 A. Hermann, T. Chaudhuri and P. Spagnol, Bipolar plates for PEM fuel cells: A review, International Journal of Hydrogen Energy, 30, 1297 (2005). Doi: https://doi.org/10.1016/j.ijhydene.2005.04.016   DOI
10 K. S. Weil, J. Y. Kim, G. Xia, J. Coleman, and Z. G. Yang, Boronization of nickel and nickel clad materials for potential use in polymer electrolyte membrane fuel cells, Surface & Coatings Technology, 201, 4436 (2006). Doi: https://doi.org/10.1016/j.surfcoat.2006.08.039   DOI
11 S. Aryani, and R. Taherian, Int. Multidisciplinary research e-journal, 3, 232 (2016).
12 B. M. Dougall, Effect of Chloride Ion on the Localized Breakdown of Nickel Oxide Films, Journal of The Electrochemical Society, 126, 919 (1979). Doi: https://doi.org/10.1149/1.2129194   DOI
13 S. R. Kumar, S. D. Krishnaa, M. D. Krishan, N. T. Gokulkumar, and A. R. Alilesh, Investigation on corrosion behaviour of aluminium 6061-T6 alloy in acidic, alkaline and salt medium, Materials Today : Proceedings, 45, 1878 (2021). Doi: https://doi.org/10.1016/j.matpr.2020.09.079   DOI
14 H. Tawfik, Y. Hung, and D. Mahajan, Metal bipolar plates for PEM fuel cell-A review, Journal of Power Sources, 163, 755 (2007). Doi: https://doi.org/10.1016/j.jpowsour.2006.09.088   DOI
15 S. H. Lee, J. S. Kim, N. H. Kang, H. H. Jo, and D. H. Nam, Surface Characteristic of Graphene Coated Stainless Steel for PEMFC Bipolar Plate, Journal of the Korean Institute of Surface Engineering, 44, 226 (2011). Doi: http://dx.doi.org/10.5695/JKISE.2011.44.5.226   DOI
16 P. J. Dillon, R. A. Reid, and R. Girard, Changes in the Chemistry of Lakes Near Subury, Ontario Following Reductions of SO2 Emissions, Water Air Soil Poll, 31, 59 (1986). Doi: https://doi.org/10.1007/978-94-009-3385-9_111   DOI
17 D. R. Hodgson, B. May, P. L. Adcock, and D. P. Davies, New lightweight bipolar plate system for polymer electrolyte membrane fuel cells, Journal of Power Sources, 96, 233 (2001). Doi: https://doi.org/10.1016/S0378-7753(01)00568-7   DOI
18 J. Scholta, B. Rohland, V. Trapp, and U. Focken, Investigations on novel low-cost graphite composite bipolar plates, Journal of Power Sources, 84, 231 (1999). Doi: https://doi.org/10.1016/S0378-7753(99)00322-5   DOI
19 K. H. Hou, C. H. Lin, M. D. Ger, S. W. Shiah, and H. M. Chou, Analysis of the Corrosion Behavior of Al Alloy Bipolar Plate for Proton Exchange Membrane Fuel Cell (PEMFC) Under Operating Thermal Conditions, International Journal of Green Energy, 9, 71 (2012). Doi: https://doi.org/10.1080/15435075.2011.621474   DOI
20 S. Rivas, E. Cuara, F. Manriquez, I. R. Terol, and G. Orozco, Corrosion Performance of Stainless Steel and Inconel in Simulated Fuel-Cell Media, Journal of The Electrochemical Society, 38, 13 (2007). Doi: https://doi.org/10.1149/1.2806946   DOI
21 J. R, Davis, Corrosion of aluminum and aluminum alloys, pp. 25 - 26, ASM International (1999).
22 A. L. Paulina, O. X. Octavio, G. L. Diego, V. L. Natalya, A. D. A. Marco, V. L. Irina, and A. E. Elsa, The Inhibition of Aluminum Corrosion in Sulfuric Acid by Poly(1-vinyl-3-alkyl-imidazolium Hexafluorophosphate, Materials, 7, 5711 (2014). Doi: https://doi.org/10.3390/ma7085711   DOI
23 M. Curioni and F. Scenini, The Mechanism of Hydrogen Evolution During Anodic Polarization of Aluminium, Electrochimica Acta, 180, 712 (2015). Doi: https://doi.org/10.1016/j.electacta.2015.08.076   DOI
24 K. S. Athanasios and G. L. Angeliki, Electrochemical Behavior of Al-Al9Co2 Alloys in Sulfuric Acid, Corrosion and Materials Degradation, 1, 249 (2020). Doi: https://doi.org/10.3390/cmd1020012   DOI
25 H. Nagano and H. Kajjmura, Clarification of stress corrosion cracking mechanism on nickel base alloys in steam generators for their long lifetime assurance, United States: NACE International, 6 (1995). Doi: https://inis.iaea.org/search/search.aspx?orig_q=RN:27043608
26 H. S. Kwon, H. S. Kim, C. J. Park, and H. J. Jang, Comprehension of stainless steels, p. 168, 191, Steel & Metal News (2007).
27 T. Xu, S. Wang, X. Tang, Y. Li, J. Yang, J. Li, and Y. Zhang, Corrosion Mechanism of Inconel 600 in Oxidizing Supercritical Aqueous Systems Containing Multiple Salts, Industrial & Enginnering Chemistry Research, 58, 23046 (2019). Doi: https://doi.org/10.1021/acs.iecr.9b04527   DOI
28 L. R. Hilbert, D. B. Ravn, J. Kold, and L. Gram, Influence of surface roughness of stainless steel on microbial adhesion and corrosion resistance, International Biodeterioration & Biodegradation, 52, 175 (2003). Doi: https://doi.org/10.1016/S0964-8305(03)00104-5   DOI