• Title/Summary/Keyword: incompressible viscous flow

Search Result 188, Processing Time 0.024 seconds

A Numerical Study of 3-D Flows in Spiral Tubes with Square Cross-Section (Spiral Tube 내에서의 3차원 유동 해석)

  • Hur Nahmkeon;Kim Seongwon
    • Journal of computational fluids engineering
    • /
    • v.4 no.1
    • /
    • pp.27-33
    • /
    • 1999
  • Spiral tube heat exchangers can find numerous applications in many engineering fields. Flow in spiral tubes is interest to engineers due to occurrence of secondary flow which enhances the cross-sectional mixing and the heat transfer rate. In the present study, an incompressible viscous 3-D flow in spiral tubes with rectangular cross-section of various torsion rate and Reynolds number is studied by using a finite volume method. It is shown that the axial velocity profile is affected by the secondary flow motion. Because there is some difference from correlation proposed by Hur et al., a lot of analysis and arrangement of experimental results are needed. This study showed the results of variation of hydrodynamic entry length for torsion and Re numbers.

  • PDF

Numerical analysis of the 3D fluid-structure interaction in the sac of artificial heart (인공심장 sac내의 3차원 유체-구조물 상호작용에 대한 수치적 연구)

  • Park M. S.;Shim E. B.;Ko H. J.;Park C. Y.;Min B. G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.27-32
    • /
    • 2000
  • In this study, the three-dimensional blood flow within the sac of KTAH(Korean artificial heart) is simulated using fluid-structure interaction model. The numerical method employed in this study is the finite element commercial package ADINA. The thrombus formation is one of the most critical problems in KTAH. High fluid shear stress or stagnated flow are believed to be the main causes of these disastrous phenomenon. We solved the fluid-structure interaction between the 3D blood flow in the sac and the surrounding sac material. The sac material is assumed as linear elastic material and the blood as incompressible viscous fluid. Numerical solutions show that high shear stress region and stagnated flow are found near the upper part of the sac and near the comer of the outlet during diastole stage.

  • PDF

A numerical study of 3-D flows in spiral tubes with square cross-section (Spiral Tube 내에서의 3차원 유동 해석)

  • KIM Seongwon;HUR Nahmkeon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.62-69
    • /
    • 1998
  • Spiral tube heat exchangers can find numerous applications in many engineering field. Flow in spital tubes is interest to engineers due to occurrence of secondary flow which enhances the cross-sectional mixing and the heat transfer rate. In the present study, an incompressible viscous 3-D flow in spiral tubes with rectangular cross-section of various torsion rate and Reynolds number is studied by using a finite volume method. It is shown that the axial velocity profile is affected by the secondary flow motion. Because there is some difference from correlation proposed by Hur et al., a lot of analysis and arrangement of experimental results are needed. This study showed the results of variation of hydrodynamic entry length for torsion and Re numbers.

  • PDF

Hall Effect on Unsteady Couette Flow. with Heat Transfer Under Exponential Decaying Pressure Gradient

  • Attia HazemAIi
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.11
    • /
    • pp.2053-2060
    • /
    • 2005
  • The unsteady Couette flow of an electrically conducting, V1SCOUS, incompressible fluid bounded by two parallel non-conducting porous plates is studied with heat transfer taking the Hall effect into consideration. An external uniform magnetic field and a uniform suction and injection are applied perpendicular to the plates while the fluid motion is subjected to an exponential decaying pressure gradient. The two plates are kept at different but constant temperatures while the Joule and viscous dissipations are included in the energy equation. The effect of the ion slip and the uniform suction and injection on both the velocity and temperature distributions is examined.

SORET AND CHEMICAL REACTION EFFECTS ON THE RADIATIVE MHD FLOW FROM AN INFINITE VERTICAL POROUS PLATE

  • MALAPATI, VENKATESWARLU;DASARI, VENKATA LAKSHMI
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.21 no.1
    • /
    • pp.39-61
    • /
    • 2017
  • In this present article, we analyzed the heat and mass transfer characteristics of the nonlinear unsteady radiative MHD flow of a viscous, incompressible and electrically conducting fluid past an infinite vertical porous plate under the influence of Soret and chemical reaction effects. The effect of physical parameters are accounted for two distinct types of thermal boundary conditions namely prescribed uniform wall temperature thermal boundary condition and prescribed heat flux thermal boundary condition. Based on the flow nature, the dimensionless flow governing equations are resolved to harmonic and non harmonic parts. In particular skin friction coefficient, Nusselt number and Sherwood number are found to evolve into their steady state case in the large time limit. Parametric study of the solutions are conducted and discussed.

2-Dimensional Flow Analysis of Impulse Turbine for Wave Energy Conversion (파랑에너지 변환용 충동터빈의 2차원 유동해석)

  • ;;;;;T. Setoguchi
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.21-27
    • /
    • 2001
  • This paper describes numerical analysis of the impulse turbine with fixed guide vanes, a high performance bi-directional air turbine having simple structure for wave energy conversion. The numerical analysis of the 2-dimensional incompressible viscous flow based on the full Reynold-averaged Navier-Stokes equations which was made to investigate the internal flow behavior. Numerical results are compared with experimental data obtained by T.Setoguchi laboratory. As a result, as suitable choice of design factor has been clarified with the understanding of the internal flow from the numerical analysis.

  • PDF

Numerical Simulation of Incompressible Laminar Flow around a Propeller Using the Multigrid Technique (멀티그리드 방법을 이용한 프로펠러 주위의 비압축성 층류유동 계산)

  • W.G. Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.4
    • /
    • pp.41-50
    • /
    • 1994
  • An iterative time marching procedure for solving incompressible viscous flows has been applied to the flow around a propeller. This procedure solves three-dimensional Navier-Stokes equations on a moving, body-fitted, non-orthogonal grid using first-order accurate scheme for the time deivatives and second-and third-order accurate schemes for the spatial derivatives. To accelerate iterative process, a multigrid technique has been applied. This procedure is suitable for efficient execution on the current generation of vector or massively parallel computer architectures. Generally good agreement with published experimental and numerical data has been obtained. It was also found that the multigrid technique was efficient in reducing the CPU time needed for the simulation and improved the solution quality.

  • PDF

APPLICATION OF DOUBLE DECOMPOSITION TO PULSATILE FLOW

  • Mamaloukas, C.;Haldar, K.;Mazumdar, H.P.
    • Journal of applied mathematics & informatics
    • /
    • v.10 no.1_2
    • /
    • pp.193-207
    • /
    • 2002
  • The present investigation deals with the pulsatile flow of incompressible viscous fluid through a circular rigid tube provided with constriction. The method applied here is the Decomposition Method, which has been developed by George Adomian [3]. The advantages of this method are the avoidance of simplifications and restrictions, which change the non-linear problem to mathematically tractable one, whose solution is not consistent with physical solution. Theoretically results, such as, wall shear stress and axial velocity component, have been obtained and the graphical solutions of these theoretical results have been shown in the figures.

SPATIAL BEHAVIOR OF SOLUTION FOR THE STOKES FLOW EQUATION

  • Liu, Yan;Liao, Wenhui;Lin, Changhao
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.2
    • /
    • pp.397-412
    • /
    • 2011
  • In this paper, the equation of the transient Stokes flow of an incompressible viscous fluid is studied. Growth and decay estimates are established associating some appropriate cross sectional line and area integral measures. The method of the proof is based on a first-order differential inequality leading to an alternative of Phragm$\'{e}$n-Lindell$\"{o} $f type in terms of an area measure of the amplitude in question. In the case of decay, we also indicate how to bound the total energy.

STEADY NONLINEAR HYDROMAGNETIC FLOW OVER A STRETCHING SHEET WITH VARIABLE THICKNESS AND VARIABLE SURFACE TEMPERATURE

  • Anjali Devi, S.P.;Prakash, M.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.3
    • /
    • pp.245-256
    • /
    • 2014
  • This work is focused on the boundary layer and heat transfer characteristics of hydromagnetic flow over a stretching sheet with variable thickness. Steady, two dimensional, nonlinear, laminar flow of an incompressible, viscous and electrically conducting fluid over a stretching sheet with variable thickness and power law velocity in the presence of variable magnetic field and variable temperature is considered. Governing equations of the problem are converted into ordinary differential equations utilizing similarity transformations. The resulting non-linear differential equations are solved numerically by utilizing Nachtsheim-Swigert shooting iterative scheme for satisfaction of asymptotic boundary conditions along with fourth order Runge-Kutta integration method. Numerical computations are carried out for various values of the physical parameters and the effects over the velocity and temperature are analyzed. Numerical values of dimensionless skin friction coefficient and non-dimensional rate of heat transfer are also obtained.