• Title/Summary/Keyword: incompressible flow

Search Result 781, Processing Time 0.02 seconds

Numerical Simulation of Floating Body Motion in Surface Waves by use of a Particle Method (입자법을 이용한 파랑중 부유체 운동의 수치시뮬레이션)

  • Jung, Sung-Jun;Park, Jong-Chun;Lee, Byung-Hyuk;Ryu, Min-Cheol;Kim, Yong-Su
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.403-406
    • /
    • 2006
  • A particle method recognized as one of gridless methods has been developed to investigate the nonlinear free-surface motions interacting to the structures. The method is more feasible and effective than convectional grid methods in order to solve the flow field with complicated boundary shapes. In the present study, breaking waves with a floating body are simulated to investigate fluid-structure interactions in the coastal zone.

  • PDF

A MULTI-DOMAIN APPROACH FOR A HYBRID PARTICLE-MESH METHOD (Hybrid Particle-Mesh 방법에 적합한 다중영역 방법)

  • Lee, Seung-Jae;Suh, Jung-Chun
    • Journal of computational fluids engineering
    • /
    • v.19 no.2
    • /
    • pp.72-78
    • /
    • 2014
  • A hybrid particle-mesh method as the combination between the Vortex-In-Cell (VIC) method and penalization method has been achieved in recent years. The VIC method, which is based on the vorticity-velocity formulation, offers particle-mesh algorithms to numerically simulate flows past a solid body. The penalization method is used to enforce boundary conditions at a body surface with a decoupling between body boundaries and computational grids. The main advantage of the hybrid particle-mesh method is an efficient implementation for solid boundaries of arbitrary complexity on Cartesian grids. However, a numerical simulation of flows in large domains is still not too easy. In this study, a multi-domain approach is thus proposed to further reduce computation cost and easily implement it. We validate the implementation by numerical simulations of an incompressible viscous flow around an impulsively started circular cylinder.

DISPOSAL OF FAR-FIELD VORTEX PARTICLES FOR LONG-TERM SIMULATIONS IN PENALIZED VICMETHOD (Penalized VIC 방법에서 장시간 유동 해석을 위한 원거리 와도 입자 처리)

  • Jo, E.B.;Lee, S.-J.;Suh, J.-C.
    • Journal of computational fluids engineering
    • /
    • v.22 no.1
    • /
    • pp.51-58
    • /
    • 2017
  • A penalized VIC method offers an efficient hybrid particle-mesh algorithm to simulate an incompressible viscous flow passing a solid body in an infinite domain. In this manner, the computational domain needs to be restricted to a relatively small region to reduce computational cost which would be very high in case of using a large domain. In this paper, we present how to dispose of far-field particles to avoid an unnecessarily large computational domain. The present approach constraints expansion of the domain and thus prevents the incremental computational cost. To validate the numerical approach, a flow around an impulsively started sphere was simulated for Reynolds numbers of 100 and 1000.

Code Development for Computation of Turbulent Flow around a Ship Model with Free-Surface (자유표면을 포함한 선체주위 난류유동 해석 코드 개발)

  • Kim J.J.;Kim H.T.;Van S.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.145-155
    • /
    • 1998
  • A computer code has been developed for the computation of the viscous flow around a ship model with the free surface. In this code, the incompressible Reynolds-averaged Navier-Stokes equations are solved numerically by a finite difference method which employes second-order finite differences for the spatial discretization and a four-stage Runge-Kutta scheme for the temporal integration of the governing equations. For the turbulence closure, a modified version of the Baldwin-Lomax model is exploited. The location of the free surface is determined by solving the equation of the kinematic free-surface condition using the Lax-Wendroff scheme and the boundary-fitted grid is generated at each time step so that one of the grid surfaces always coincides with the free surface. An inviscid approximation of the dynamic free-surface boundary condition is applied as the boundary conditions for the velocity and pressure on the free surface. To validate the computational method and the computer code developed in the present study, the numerical computations are carried out for both Wigley parabolic hull and Series 60 $C_B=0.6$ ship model and the computational results are compared with the experimental data.

  • PDF

Numerical Study on the Particle Movement of a Particle-Laden Impinging Jet (고체 입자가 부상된 충돌제트에서의 입자 거동에 관한 수치해석적 연구)

  • Lee, Jae-Beom;Seo, Yeong-Seop;Lee, Jeong-Hui;Choe, Yeong-Gi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1802-1812
    • /
    • 2001
  • The purpose of this study is to analyze numerically the movement of particles included in turbulent fluid flow characteristics of metallic surfaces. To describe fluid flew, the incompressible Navier-Stokes equation discretized by the finite volume method were solved on the non-orthogonal coordinates with non-staggered variable arrangement, and the k-$\xi$ turbulence model was adapted. After fluid flow was calculated, particle movement was predicted from the Lagrangian approaches. Non-essential complexities were avoided by assuming that the particles had spherical shapes and the Stoke's drag formula only consisted of external farces acting upon them. In order to validate the numerical calculations, the results were compared with the experimental data reported in literature and agreed well with them. The drag force coefficient equation showed better agreement with the experimental data in the prediction of particle movement than the correction factor equation. Impact velocity and impact angle increased as inlet turbulence intensity decreased, relative jet height was lower. or the Reynolds number was larger.

Localized Necking in a Round Tensile Bar for a HCP Material Considering Tension-compression Asymmetry in Plastic Flow (소성 비대칭성을 갖는 HCP 소재의 국부변형 및 네킹해석)

  • Yoon, J.H.;Lee, J.H.
    • Transactions of Materials Processing
    • /
    • v.21 no.5
    • /
    • pp.285-290
    • /
    • 2012
  • In spite of progress in predicting ductile failure, the development of a macroscopic yield criterion to describe damage evolution in HCP (hexagonal close-packed) materials remains a challenge. HCP materials display strength differential effects (i.e., different behavior in tension versus compression) in their plastic response due to twinning. Cazacu and Stewart(2009) developed an analytical yield criterion for porous material containing randomly distributed spherical voids in an isotropic, incompressible matrix that shows tension-compression asymmetry. The goal of the calculations in this paper is to investigate the effect of the tension-compression asymmetry on necking induced by void nucleation, evolution and consolidation. In order to investigate the effect of the tension-compression asymmetry of the matrix on necking and fracture initiation, three isotropic materials A, B, and C were examined with different ratios of tension-compression asymmetry. The various types of material had BCC, FCC, and HCP crystal structures, respectively. The ratio between tension and compression in plastic flow significantly influences the fracture shape produced by damage propagation as well as affecting the localized neck.

Study on the Unsteady Wakes Past a Square Cylinder near a Wall

  • Kim Tae Yoon;Lee Bo Sung;Lee Dong Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.1169-1181
    • /
    • 2005
  • Experimental and numerical studies on the unsteady wake field behind a square cylinder near a wall were conducted to find out how the vortex shedding mechanism is correlated with gap flow. The computations were performed by solving unsteady 2-D Incompressible Reynolds Averaged Navier-Stokes equations with a newly developed ${\epsilon}-SST$ turbulence model for more accurate prediction of large separated flows. Through spectral analysis and the smoke wire flow visualization, it was discovered that velocity profiles in a gap region have strong influences on the formation of vortex shedding behind a square cylinder near a wall. From these results, Strouhal number distributions could be found, where the transition region of the Strouhal number was at $G/D=0.5{\sim}0.7$ above the critical gap height. The primary and minor shedding frequencies measured in this region were affected by the interaction between the upper and the lower separated shear layer, and minor shedding frequency was due to the separation bubble on the wall. It was also observed that the position (y/G) and the magnitude of maximum average velocity $(u/u_{\infty})$ in the gap region affect the regular vortex shedding as the gap height increases.

Grid Refinement Model in Lattice Boltzmann Method for Stream Function-Vorticity Formulations (유동함수-와도 관계를 이용한 격자볼츠만 방법에서의 격자 세밀화 모델)

  • Shin, Myung Seob
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.5
    • /
    • pp.415-423
    • /
    • 2015
  • In this study, we present a grid refinement model in the lattice Boltzmann method (LBM) for two-dimensional incompressible fluid flow. That is, the model combines the desirable features of the lattice Boltzmann method and stream function-vorticity formulations. In order to obtain an accurate result, very fine grid (or lattice) is required near the solid boundary. Therefore, the grid refinement model is used in the lattice Boltzmann method for stream function-vorticity formulation. This approach is more efficient in that it can obtain the same accurate solution as that in single-block approach even if few lattices are used for computation. In order to validate the grid refinement approach for the stream function-vorticity formulation, the numerical simulations of lid-driven cavity flows were performed and good results were obtained.

Numerical Study of the Flow Field Around an Axisymmetric Body with Integrated Propulsors (복합추진장치가 포함된 축대칭 물체 주위유동의 수치적 연구)

  • Jong-Woo Ahn;Il-Sung Moon;Sang-Woo Pyo;Jung-Chun Suh
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.4
    • /
    • pp.1-8
    • /
    • 1999
  • Numerical study is carried out to investigate flow characteristics around an axisymmetric body with and without an integrated propulsor. The incompressible Reynolds-Averaged Navier-Stokes(RANS) equations are also solved using the finite volume method and the standard $k-\varepsilon$ turbulence model for turbulence closure. In order to investigate the propulsor-hull interaction, the induced velocity calculated by surface panel methods is utilized for the boundary condition at the propeller plane. The calculated results are compared to the experimental results. It is considered that the present numerical code can be used for design of an integrated propulsor.

  • PDF

Analysis of Flow Around A Rigid Body on Water-Entry & Exit Problems (접수와 이수 문제에서 강체주위 유동해석)

  • Il-Ryong Park;Ho-Hwan Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.4
    • /
    • pp.37-47
    • /
    • 1999
  • A Finite Volume Method for the discretization of the two-dimensional incompressible Navier-Stokes equation is used to analyse water entry & exit problems in a generalized coordinate system. The free-surface deformations generated by the water entry or exit of a rigid body are simulated by the Level-Set scheme[11]. In the water entry problems for a wedged section and a flared-ship section, the calculation results of water impact force are compared with the experimental results[5] and the time varying free-surface deformations and flow characteristics of the water exit of a cylinder are investigated.

  • PDF