• Title/Summary/Keyword: incompressible

Search Result 1,064, Processing Time 0.028 seconds

BICOMPRESSIBLE SURFACES AND INCOMPRESSIBLE SURFACES

  • Saito, Toshio
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.2
    • /
    • pp.515-520
    • /
    • 2019
  • We give new evidence that "complicated" Heegaard surfaces behave like incompressible surfaces. More precisely, suppose that a closed connected orientable 3-manifold M contains a closed connected incompressible surface F which separates M into two (connected) components $M_1$ and $M_2$. Let S be a Heegaard surface of M. Our result is that if the Hempel distance of S is at least four, then S is isotoped so that $S{\cap}M_i$ is incompressible for each i = 1, 2.

Extension of Incompressible Flow Solver Algorithm to Analyze Compressible Flowfield (비압축성 유동해석 알고리듬 확장을 통한 압축성 유동장 해석)

  • Lim, Yeong-Taek;Kim, Moon-Sang
    • Journal of Aerospace System Engineering
    • /
    • v.2 no.2
    • /
    • pp.20-27
    • /
    • 2008
  • The characteristics of compressible flow are different from those of incompressible flow from the mathematical and physical point of view. Therefore, the way to solve the flowfield is different between compressible flow and incompressible flow. In general, density-based numerical algorithm is mainly used for compressible flow solver development. On the other hand, incompressible flow solver prefers to use pressure-based numerical algorithm. In this research, a compressible Navier-Stokes flow solver is developed by means of extending from pressure-based incompressible numerical algorithm to handle both compressible and incompressible flows using the same flow solver. The present flow solver is tested at various speed ranges and compared with the solutions of density-based compressible flow solver. Numerical results show a good agreement between two flow solvers.

  • PDF

Multiscale method and pseudospectral simulations for linear viscoelastic incompressible flows

  • Zhang, Ling;Ouyang, Jie
    • Interaction and multiscale mechanics
    • /
    • v.5 no.1
    • /
    • pp.27-40
    • /
    • 2012
  • The two-dimensional incompressible flow of a linear viscoelastic fluid we considered in this research has rapidly oscillating initial conditions which contain both the large scale and small scale information. In order to grasp this double-scale phenomenon of the complex flow, a multiscale analysis method is developed based on the mathematical homogenization theory. For the incompressible flow of a linear viscoelastic Maxwell fluid, a well-posed multiscale system, including averaged equations and cell problems, is derived by employing the appropriate multiple scale asymptotic expansions to approximate the velocity, pressure and stress fields. And then, this multiscale system is solved numerically using the pseudospectral algorithm based on a time-splitting semi-implicit influence matrix method. The comparisons between the multiscale solutions and the direct numerical simulations demonstrate that the multiscale model not only captures large scale features accurately, but also reflects kinetic interactions between the large and small scale of the incompressible flow of a linear viscoelastic fluid.

Simulations on Incompressible MHD Turbulence

  • CHO JUNGYEON
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.275-279
    • /
    • 2001
  • The study of incompressible magnetohydrodynamic (MHD) turbulence gives useful insights on many astrophysical problems. We describe a pseudo-spectral MHD code suitable for the study of incompressible turbulence. We review our recent' works on direct three-dimensional numerical simulations for MHD turbulence in a periodic box. In those works, we use a pseudo-spectral code to solve the incompressible MHD equations. We first discuss the structure and properties of turbulence as functions of scale. The results are consistent with the scaling law recently proposed by Goldreich & Sridhar. The scaling law is based on the concept of scale-dependent isotropy: smaller eddies are more elongated than larger ones along magnetic field lines. This scaling law substantially changes our views on MHD turbulence. For example, as noted by Lazarian & Vishniac, the scaling law can provide a fast reconnection rate. We further discuss how the study of incompressible MHD turbulence can help us to understand physical processes in interstellar medium (ISM) by considering imbalanced cascade and viscous damped turbulence.

  • PDF

Extension of Compressible Flow Solver to Incompressible Flow Analysis (비압축성 유동 해석을 위한 압축성 유동 해석자 확장)

  • Kim, Donguk;Kim, Minsoo;Lee, Seungsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.6
    • /
    • pp.449-456
    • /
    • 2021
  • In this paper, we present a strategy to extend solution capability of an existing low Mach number preconditioned compressible solver to incompressible flows with a little modification. To this end, the energy equation that is of the same form of the total energy equation of compressible flows is used. The energy equation is obtained by a linear combination of the thermal energy equation, the continuity equation and the mechanical energy equation. Subsequently, a modified artificial compressibility method in conjunction with a time marching technique is applied to these incompressible governing equations for steady flow solutions. It is found that the Roe average of the common governing equations is equally valid for both the compressible and incompressible flow conditions. The extension of an existing compressible solver to incompressible flows does not affect the original compressible flow analysis. Validity for incompressible flow analysis of the extended solver is examined for various inviscid, laminar and turbulent flows.

DEVELOPMENT OF AN UNSTRUCTURED HYBRID MESH FLOW SOLVER FOR 3-D STEADY/UNSTEADY INCOMPRESSIBLE FLOW SIMULATIONS (삼차원 정상/비정상 비압축성 유동해석을 위한 비정렬 혼합격자계 기반의 유동해석 코드 개발)

  • Jung, Mun-Seung;Kwon, Oh-Joon
    • Journal of computational fluids engineering
    • /
    • v.13 no.2
    • /
    • pp.27-41
    • /
    • 2008
  • An unstructured hybrid mesh flow solver has been developed for the simulation of three-dimensional steady and unsteady incompressible flow fields. The incompressible Navier-Stokes equations with an artificial compressibility method were discretized by using a node-based finite-volume method. For the unsteady time-accurate computation, a dual-time stepping method was adopted to satisfy a divergence-free flow field at each physical time step. An implicit time integration method with local time stepping was implemented to accelerate the convergence in the pseudo-time sub-iteration procedure. The one-equation Spalart-Allmaras turbulence model has been adopted to solve high-Reynolds number flow fields. The flow solver was parallelized to minimize the CPU time and to overcome the computational overhead. This method has been applied to calculate steady and unsteady flow fields around submarine configurations and a 3-D infinite cylinder. Validations were made by comparing the predicted results with those of experiments or other numerical results. It was demonstrated that the present method is efficient and robust for the prediction of steady and unsteady incompressible flow fields.

Incompressible/Compressible Flow Analysis over High-Lift Airfoils Using Two-Equation Turbulence Models (2-방정식 난류모델을 이용한 고양력 익형 주위의 비압축성/압축성 유동장 해석)

  • Kim C. S.;Kim C. A.;Rho O. H.
    • Journal of computational fluids engineering
    • /
    • v.4 no.1
    • /
    • pp.53-61
    • /
    • 1999
  • Two-dimensional, unsteady, incompressible and compressible Navier-Stokes codes are developed for the computation of the viscous turbulent flow over high-lift airfoils. The compressible code involves a conventional upwind-differenced scheme for the convective terms and LU-SGS scheme for temporal integration. The incompressible code with pseudo-compressibility method also adopts the same schemes as the compressible code. Three two-equation turbulence models are evaluated by computing the flow over single and multi-element airfoils. The compressible and incompressible codes are validated by predicting the flow around the RAE 2822 transonic airfoil and the NACA 4412 airfoil, respectively. In addition, both the incompressible and compressible code are used to compute the flow over the NLR 7301 airfoil with flap to study the compressible effect near the high-loaded leading edge. The grid systems are efficiently generated using Chimera overlapping grid scheme. Overall, the κ-ω SST model shows closer agreement with experiment results, especially in the prediction of adverse pressure gradient region on the suction surfaces of high-lift airfoils.

  • PDF

Incompressible Viscous Analysis on Unstructured Meshes using Artificial Compressibility Method (가압축성 기법을 이용한 비정렬 격자상에서의 비압축성 점성해석)

  • Moon Young J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.113-117
    • /
    • 1995
  • Viscous analysis on incompressible flows is performed using unstructured triangular meshes. A two-dimensional and axisymmetric incompressible Navier-Stokes equations are solved in time-marching form by artificial compressibility method. The governing equations are discretized by a cell-centered based finite-volume method. and a centered scheme is used for inviscid and viscous fluxes with fourth order artificial dissipation. An explicit multi-stage Runge-Kutta method is used for the time integration with local time stepping and implicit residual smoothing. Convergence properties are examined and solution accuracies are also validated with benchmark solution and experiment.

  • PDF

Development of an Incompressible Navier-Stokes Solver using SMAC Algorithm on Unstructured Triangular Meshes (비구조형 삼각형 격자에 대한 SMAC기법을 이용한 비압축성 나비어-스톡스 방정식 해법 개발)

  • Nam Hyeun S.;Moon Young J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.55-60
    • /
    • 1997
  • An unstructured finite volume method is presented for seeking steady and unsteady flow solutions of the two-dimensional incompressible viscous flows. In the present method, SMAC-type algorithm is implemented on unstructured triangular meshes, using second order upwind scheme for the convective fluxes. Validation tests are made for various steady and unsteady incompressible flows. Convergence characteristics are examined and accuracy comparisons are made with some benchmark solutions.

  • PDF

A STUDY OF INCOMPRESSIBLE VISCOUS FLOW ANALYSIS BY VORTEX-IN-CELL METHOD (보오텍스 인 셀 방법을 이용한 점성유동해석 연구)

  • Lee, J.H.;Kim, Y.C.;Lee, K.J.;Suh, J.C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.78-85
    • /
    • 2011
  • The Vortex-In-Cell(VIC) method combined with panel method is applied to the analysis of incompressible unsteady viscous flow. The dynamics of resulting flow is governed by the vorticity transport equation in Lagrangian form with vortex particle representation of the flow field. A regular grid which is independent to the shape of a body is used for numerical evaluation based on immersed boundary technique. With an introduction of this approach, the development and validation of the VIC method is presented with some computational results for incompressible viscous flow around two or three dimensional bodies such as wing section, sphere, finite wing and marine propeller.

  • PDF