• Title/Summary/Keyword: inbreeding coefficient

Search Result 57, Processing Time 0.025 seconds

Effectiveness of Microsatellite Markers for Parentage Analysis of Giant Grouper (Epinephelus lanceolatus) Broodstock (Microsatellite 마커를 이용한 대왕바리(Epinephelus lanceolatus) 친어 집단의 가계도 분석 효율)

  • Kim, Keun-Sik;Noh, Choong Hwan;Sade, Ahemad;Bang, In-Chul
    • Korean Journal of Ichthyology
    • /
    • v.27 no.1
    • /
    • pp.10-15
    • /
    • 2015
  • Giant grouper (Epinephelus lanceolatus) is a endangered species considered as a vulnerable grade-organism in the International Union for Conservation of Nature (IUCN) red list. As a fundamental baseline study for establishing a giant grouper broodstock management system, the efficiency for parentage analysis was evaluated by using microsatellite makers previously available in this species. The eight microsatellites generated a total 52 alleles from 32 individuals, the mean expected heterozygosity was 0.663, and mean inbreeding coefficient was 0.011, consequently suggesting that the present broodstock has retained the high level of genetic diversity. However, our analysis also recommended the collection of more broodfish for more stable brood line, since the estimated value of the effective population size was proven to be 35. The average probability of identity was $6.85{\times}10^{-11}$. NE-2P and NE-PP of paternity non-exclusion probabilities were 0.00835 and 0.00027, respectively. As the result of principle coordinate analysis, the genotype of broodstock was not overlapped, suggesting that the management system of giant grouper based on eight selected microsatellite markers might be effective, although further validation with extended number of broodfish might also be needed in future. Data of present study could be a useful basis to avoid the unwanted selection of broodfish that possess close genetic relationship with current broodstock, and consequently to establish effective broodstock management system allowing the production of progeny with high genetic diversity.

Genetic Variation of Abies holophylla Populations in South Korea Based on ISSR Markers (ISSR 분석에 의한 전나무 집단의 유전변이)

  • Kim, Young-Mi;Hong, Kyung Nak;Lee, Jei Wan;Yang, Byeong-Hoon
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.2
    • /
    • pp.182-188
    • /
    • 2014
  • Genetic diversity and genetic differentiation in six natural populations of Abies holophylla Max were investigated using ISSR marker system. From 6 ISSR primers, the average percentage of polymorphic loci was 85.6%, and the average expected heterozygosity ($H_e$) was 0.288. From the result of AMOVA, 94.4% of total genetic variation came from the differences among individuals within populations, and 5.6% was caused by those of among-populations. On the basis of Bayesian inference, genetic differentiation (${\theta}^{II}$ and $G_{ST}$) and inbreeding coefficient for all populations were 0.045, 0.038, and 0.509, respectively. The correlation between genetic distance and geographical distance was highly significant at the Mental's test (r = 0.74, P < 0.05). Six populations divided into two groups according to the results of UPGMA and PCA. One group included Namwon, Cheongdo and Mungyeong population. The other was Inje, Hongcheon and Pyeongchang population. Also, in Bayesian clustering analysis, 6 populations were divided into two clusters. But Cheongdo population was assigned into the other cluster unlike those of UPGMA or PCA. Taking the regions based on the results of the cluster analysis into consideration of AMOVA, 3.9% of genetic variation came from the regional difference. The dendrogram from UPGMA could provide the most genetically reasonable explanation for the distribution of Abies holophylla populations in South Korea.

Genetic Diversity and Population Genetic Structure of Exochorda serratifolia in South Korea (가침박달 집단의 유전다양성 및 유전구조 분석)

  • Hong, Kyung Nak;Lee, Jei Wan;Kang, Jin Taek
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.1
    • /
    • pp.122-128
    • /
    • 2013
  • Genetic diversity and population genetic structure were estimated in nine natural populations of Exochorda serratifolia in South Korea using ISSR marker system. Average of polymorphic loci per primer was 5.8 (S.D.=2.32) and percentage of polymorphic loci per population was 78.7% with total 35 loci from 6 ISSR primers. In AMOVA, 27.8% of total genetic variation came from genetic difference among populations and 72.2% was resulted from difference among individual trees within populations. Genetic differentiations by Bayesian inference were 0.249 of ${\theta}^{11}$ and 0.227 of $G_{ST}$. Inbreeding coefficient for total populations was 0.412. There was significant correlation between genetic distance and geographic distance among populations. On the results of Bayesian cluster analysis, nine populations were assigned into three groups. The first group included 5 populations, and the second and the third had two populations per group, respectively. These three regions could explain 10.0% of total genetic variation from hierarchical AMOVA, and the levels of among-population and among-individual were explained 19.7% and 70.3%, respectively. The geographic distribution of populations following the three Bayesian clusters could be explained with mountain range as Baekdudaegan which is the main chain of mountains in Korea. The mountains as the physical barrier might hamper gene flow in the pearlbush. So when protected areas are designated for conservation of this species, we should consider those three regions into considerations and would better to choose at least one population per region.

Genetic Diversity and Genetic Structure of Phellodendron amurense Populations in South Korea (황벽나무 자연집단의 유전다양성 및 유전구조 분석)

  • Lee, Jei-Wan;Hong, Kyung-Nak;Kang, Jin-Taek
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.1
    • /
    • pp.51-58
    • /
    • 2014
  • Genetic diversity and genetic structures were estimated in seven natural populations of Phellodendron amurense Rupr in South Korea using ISSR markers. The average of polymorphic loci per primer and the proportion of polymorphic loci per population were 4.5 and 78.8% respectively with total 27 polymorphic loci from 6 ISSR primers. The Shannon's diversity index(I) was 0.421 and the expected heterozygosity($H_e$) was 0.285, which was similar to the heterozygosity (hs =0.287) inferred by Bayesian method. In AMOVA, 7.6% of total genetic variation in the populations was resulted from the genetic difference among populations and the other 92.4% was resulted from the difference among individuals within populations. Genetic differentiation(${\theta}^{II}$) and inbreeding coefficient(f) for total population were estimated to be 0.066 and 0.479 by Bayesian method respectively. In Bayesian clustering analysis, seven populations were assigned into three groups. This result was similar to the results of genetic relationships by UPGMA and PCA. The first group included Hwachoen, Gapyeong, Bongpyeong and Yongpyeong population, and the second included two populations in Sancheong region. Muju population was discretely assigned into the third group in spite of the geographically short distance from the Sancheong region. There was no significant correlation between genetic relationship and geographic distribution among populations in Mantel's test. For conservation of the phellodendron trees, it would be effective to consider the findings resulted from this study with ecological traits and life histories of this species.

Genetic diversity and population structure in five Inner Mongolia cashmere goat populations using whole-genome genotyping

  • Tao Zhang;Zhiying Wang;Yaming Li;Bohan Zhou;Yifan Liu;Jinquan Li;Ruijun Wang;Qi Lv;Chun Li;Yanjun Zhang;Rui Su
    • Animal Bioscience
    • /
    • v.37 no.7
    • /
    • pp.1168-1176
    • /
    • 2024
  • Objective: As a charismatic species, cashmere goats have rich genetic resources. In the Inner Mongolia Autonomous Region, there are three cashmere goat varieties named and approved by the state. These goats are renowned for their high cashmere production and superior cashmere quality. Therefore, it is vitally important to protect their genetic resources as they will serve as breeding material for developing new varieties in the future. Methods: Three breeds including Inner Mongolia cashmere goats (IMCG), Hanshan White cashmere goats (HS), and Ujimqin white cashmere goats (WZMQ) were studied. IMCG were of three types: Aerbas (AEBS), Erlangshan (ELS), and Alashan (ALS). Nine DNA samples were collected for each population, and they were genomically re-sequenced to obtain high-depth data. The genetic diversity parameters of each population were estimated to determine selection intensity. Principal component analysis, phylogenetic tree construction and genetic differentiation parameter estimation were performed to determine genetic relationships among populations. Results: Samples from the 45 individuals from the five goat populations were sequenced, and 30,601,671 raw single nucleotide polymorphisms (SNPs) obtained. Then, variant calling was conducted using the reference genome, and 17,214,526 SNPs were retained after quality control. Individual sequencing depth of individuals ranged from 21.13× to 46.18×, with an average of 28.5×. In the AEBS, locus polymorphism (79.28) and expected heterozygosity (0.2554) proportions were the lowest, and the homologous consistency ratio (0.1021) and average inbreeding coefficient (0.1348) were the highest, indicating that this population had strong selection intensity. Conversely, ALS and WZMQ selection intensity was relatively low. Genetic distance between HS and the other four populations was relatively high, and genetic exchange existed among the other four populations. Conclusion: The Inner Mongolia cashmere goat (AEBS type) population has a relatively high selection intensity and a low genetic diversity. The IMCG (ALS type) and WZMQ populations had relatively low selection intensity and high genetic diversity. The genetic distance between HS and the other four populations was relatively high, with a moderate degree of differentiation. Overall, these genetic variations provide a solid foundation for resource identification of Inner Mongolia Autonomous Region cashmere goats in the future.

Major Characteristics Related on Eating Quality and Classification of Inbred Lines of Waxy Corn (찰옥수수 자식계통 식미관련 특성 및 계통 분류)

  • Jung Tae-Wook;Kim Sun-Lim;Moon Hyeon-Gui;Son Beom-Young;Kim Si Ju;Kim Soon Kwon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.spc1
    • /
    • pp.161-166
    • /
    • 2005
  • Objectives of this study were to select inbred lines which have a good eating quality and desirable segregates during inbreeding of waxy corn. The 64 inbred lines showed a large variance in their kernel shape and weight. 100-kernel weight, pericarp thickness, kernel length, kernel width, and kernel thickness ranged $11.7\~37.3g,\;11\~77{\mu}m,\;5.8\~9.6mm,\;6.5\~10.0mm$, and $4.1\~6.8mm$, respectively. The physicochemical analysis of 64 waxy corn inbred lines showed crude protein, crude fat, free sugar, and amylopectin content ranging $8.7\~15.8\%,\;2.3\~5.8\%,\;1.1\~11.0\%,\;and\;78.5\~93.8\%$, respectively. The texture property analysis of 64 inbred lines by texture analyzer showed a big difference. Gumminess, hardness, and chewiness of 64 inbred lines ranged $91\~383,\;181\~394,\;and\;73\~370$, respectively. The principal component analysis for 14 characteristics related to kernel quality showed that $73.1\%$ of the total variation could be attributed to the first five principal components. Biological meaning of the principal component was explained clearly by the correlation coefficient between principal components and characters. The first principal component appeared to correspond to small kernel and bad eating quality, The second principal component appeared to correspond to large kernel and good eating quality. The 64 inbred lines were classified into 8 groups by the cluster analysis using the first and second principal component. Among the groups, group VII and VIII included inbred lines with good eating quality that had thin pericarp thickness, low protein content, large kernel, and soft tenderness.

Genetic Variation of nSSR Markers in Natural Populations of Abies koreana and Abies nephrolepis in South Korea (남한지역 구상나무와 분비나무 집단에서의 nSSR 표지 유전 변이)

  • Hong, Yong-Pyo;Ahn, Ji-Young;Kim, Young-Mi;Yang, Byeong-Hoon;Song, Jeong-Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.4
    • /
    • pp.577-584
    • /
    • 2011
  • To estimate level of genetic variation and genetic differentiation among populations of 3 populations in Abies koreana and 5 populations in Abies nephrolepis, 5 nSSR markers were analyzed. Except 1 locus where too many alleles were observed excessively, population genetic parameters were recalculated with 4 loci. Mean expected heterozygosities ($H_e$) were 0.292 in A. koreana and 0.220 in A. nephrolepis, respectively. In both species, positive fixation coefficient was estimated (F=0.065 for A. koreana and F=0.095 for A. nephrolepis), which suggests that there is an excess of homozygotes relative to Hardy-Weinberg expectations within populations. Relatively high degree of population differentiation was observed in A. koreana ($F_{ST}=0.063$). compared to that of A. nephrolepis ($F_{ST}=0.039$). From 3-level Hierarchical estimation of F-staticstics, only 4.9% of the genetic variation was allocated between species ($F_{PT}$), which suggested that most of genetic variation was shared between two species. On the basis of results from analysis of genetic relationships among populations, 2 populations of A. koreana (Mt. Halla and Mt. Deogyu) were genetically distinct from the populations of A. nephrolepis but a population of Mt. Jiri was allocated within a group of populations of A. nephrolepis. Populations of both species seemed to have undergone genetic drift due to gradual decrease in population size induced by global warming after the last glacier, which resulted in increase of homozygotes by inbreeding. It could be also postulated that these species might be diverged recently and It is likely that the two species have not fully speciated yet.