Browse > Article
http://dx.doi.org/10.14578/jkfs.2011.100.4.6

Genetic Variation of nSSR Markers in Natural Populations of Abies koreana and Abies nephrolepis in South Korea  

Hong, Yong-Pyo (Division of Forest Genetic Resources, Korea Forest Research Institute)
Ahn, Ji-Young (Division of Forest Genetic Resources, Korea Forest Research Institute)
Kim, Young-Mi (Division of Forest Genetic Resources, Korea Forest Research Institute)
Yang, Byeong-Hoon (Forest Environment Conservation Division, Korea Forest Service)
Song, Jeong-Ho (Division of Forest Genetic Resources, Korea Forest Research Institute)
Publication Information
Journal of Korean Society of Forest Science / v.100, no.4, 2011 , pp. 577-584 More about this Journal
Abstract
To estimate level of genetic variation and genetic differentiation among populations of 3 populations in Abies koreana and 5 populations in Abies nephrolepis, 5 nSSR markers were analyzed. Except 1 locus where too many alleles were observed excessively, population genetic parameters were recalculated with 4 loci. Mean expected heterozygosities ($H_e$) were 0.292 in A. koreana and 0.220 in A. nephrolepis, respectively. In both species, positive fixation coefficient was estimated (F=0.065 for A. koreana and F=0.095 for A. nephrolepis), which suggests that there is an excess of homozygotes relative to Hardy-Weinberg expectations within populations. Relatively high degree of population differentiation was observed in A. koreana ($F_{ST}=0.063$). compared to that of A. nephrolepis ($F_{ST}=0.039$). From 3-level Hierarchical estimation of F-staticstics, only 4.9% of the genetic variation was allocated between species ($F_{PT}$), which suggested that most of genetic variation was shared between two species. On the basis of results from analysis of genetic relationships among populations, 2 populations of A. koreana (Mt. Halla and Mt. Deogyu) were genetically distinct from the populations of A. nephrolepis but a population of Mt. Jiri was allocated within a group of populations of A. nephrolepis. Populations of both species seemed to have undergone genetic drift due to gradual decrease in population size induced by global warming after the last glacier, which resulted in increase of homozygotes by inbreeding. It could be also postulated that these species might be diverged recently and It is likely that the two species have not fully speciated yet.
Keywords
Abies koreana; Abies nephrolepis; nSSR; genetic diversity; genetic structure;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 강범용. 2002. 구상나무 천연집단의 공간적 유전구조와 교배양식 및 유전자원 보전전략. 서울대학교 대학원 박사학위논문.
2 구경아, 박원규, 공우석. 2001. 한라산 구상나무의 연륜연대학적 연구(기후변화에 따른 생장변동 분석). 한국생태학회지 24(5): 281-288.
3 김갑태, 추갑철. 2000. 지역별 구상나무 생육현황 비교. 한국환경생태학회지 14(1): 80-87.
4 김영두, 김삼식. 1983. 한국산 Abies속의 내외형태학적 특성에 관한 연구. 한국임학회지 62: 68-75.
5 김인식. 1998. RAPD marker에 의한 국내 전나무류의 유전적 구조와 유연관계. 서울대학교 박사학위논문. 서울대학교 대학원. pp. 99.
6 김인식, 현정오. 2000. RAPD 분석에 의한 구상나무 천연집단의 유전적 다양성. 한국육종학회지 32(1): 12-18.
7 김찬수, 이석우, 고정군. 2007. 한라산의 구상나무. 제주특별자치도 한라산연구소. pp. 89-141.
8 이강영, 김현권. 1982. 구상나무 천연집단의 침엽형질 변이. 한국임학회지 57: 39-44.
9 이석우, 김용율, 현정오, 김진수. 1997. 동위효소 및 RAPD 분석에 의한 소나무 천연집단의 유전변이 비교. 한국육종학회지 29: 72-83.
10 이창복. 1970. 구상나무와 새로 발견된 품종. 한국임학회지 10: 5-6.
11 임종환, 우수영, 권미정, 김용율. 2007. 한라산 구상나무 건재개체와 쇠약개체의 항산화효소활성 및 토양특성. 한국임학회지 96(1): 14-20.
12 송정호, 이정주, 이갑연, 이재천, 김용율. 2007. 분비.구상나무 천연집단의 침엽특성 변이. 한국임학회지 96(4):387-392.
13 송정호, 이정주, 강규석. 2008. 구상나무 천연집단의 구과, 종자, 포침특성 변이. 한국임학회지 97(6): 565-569.
14 조현제, 배관호, 이창석, 이충화. 2004. 아고산 지역 상록침엽수림 종조성과 구조. 한국임학회지 93(5): 372-379.
15 홍용표, 권해연, 김용율. 2006. 국내 소나무 집단에 있어서 cpSSR 표지자 변이체의 분포양상. 한국임학회지 95(4): 435-442.
16 Altukhov, Y.P. and Salmenkova, E.A. 2002. DNA Polymorphism in Population Genetics. Russian Journal of Genetics 38(9): 989-1008.   DOI   ScienceOn
17 Chapuis, M.P. and Estoup, A. 2007. Microsatellite Null Alleles and Estimation of Population Differentiation. Molecular Biology Evolution 24(3): 621-631.
18 Cremer, E., Liepelt, S., Sebastiani. F., Buonamici, A., Michalczyk, I.M., Ziegenhagen, B. and Vendramin, G.G. 2006. Identification and characterization of nuclear microsatellite loci in Abies alba Mill. Molecular Ecology Notes 6: 374-376.   DOI   ScienceOn
19 Echt, C.S., Vendramin G.G., Nelson C.D. and Marquardt P. 1999. Microsatellite DNA as shared genetic markers among conifer species. Canadian Journal of Forest Research 29: 365-371.   DOI
20 Felsenstein, J. 1993. PHYLIP(Phylogeny Inference Pakage) version 3.5c. Distributed by the author. Department of Genetics. University of Washington. Seattle. WA. U.S.A.
21 Hamrick, J.L., Godt M.J.W. and Sherman-Broyles, S.L. 1992. Factors influencing levels of genetic diversity in woody plant species. New Forests 6: 95-124.   DOI   ScienceOn
22 Hansen, O.K., Kjaer, E.D. and Vendramin, G.G. 2005. Chloroplast microsatellite variation in Abies nordmanniana and simulation of causes for low differentiation among populations. Tree Genetics & Genomes 1: 116-123.   DOI   ScienceOn
23 Hartl, D.L. and Clark, A.G. 2007. Principles of population genetics. 4th ed. Sinauer Associates, Inc. Sunderland, Massachusetts. pp. 66-67.
24 Hong, Y.P., Kwon, H.Y. and Kim, I.S. 2004. I-SSR markers revealed inconsistent phylogeographic patterns among populations of Japanese red pine in Korea. Silvae Genetica 56(1): 22-26.
25 Kwon, H.Y. and Kim, Z.S. 2002. ISSR variation within and among Korean populations in Taxus cuspidata. Journal of Korean Forest Society 91(5): 654-660.
26 Kong, W.S. 1998. The Alpine and subalpine Geoecology of the Korean Peninsula. Korean Journal of Ecology 21(4): 383-387.
27 Kormutak, A., Hong, Y.P., Kwon, H.Y. and Kim, C.S. 2007. Variatuon in trn-L/trn-V and trn-F/trn-T spacer regions of cpDNA in Abies koreana Wilson and A. nephrolepis Traut./Maxims. Journal of Korean Forest Society 96(2): 131-137.
28 Korshikov, I.I., Pirko, N.N. and Pirko, Y.V. 2005. Genetic variation and differentiation of Abies alba Mill. populations from Ukrainian Carpathians Russian. Journal of Genetics 41(3): 275-283.
29 Lee, S.W., Hong, Y.P., Kwon, H.Y. and Kim, Z.S. 2006. Population Genetics Studies on Indigenous Conifer in Korea. Forest Science and Technology 2(2): 137-148.   DOI
30 Lee, S.W., Yang, B.H., Han, S.D., Song, J.H. and Lee, J.J. 2008. Genetic variation in natural populations of Abies nephrolepis Max. in South Korea. Annual Forest Science 65(302): 1-7.
31 Liewlaksaneeyanawin, C., Ritland, C.E., El-Kassaby, Y.A. and Ritland, K. 2004. Single-copy, species-transferable microsatellite markers developed from loblolly pine ESTs. Theoretical and Applied Genetics 109: 361-369.
32 Lynch, M. and Milligan, B.G. 1994. Analysis of population genetic structure with RAPD markers. Molecular Ecology 3: 91-99.   DOI   ScienceOn
33 Maghuly, F., Pinsker, W., Praznik, W. and Fluch, S. 2006. Genetic diversity in managed subpopulations of Norway spruce (Picea abies (L.) Karst.). Forest Ecology Management 222: 266-271.   DOI   ScienceOn
34 Mariette, S., Chagne, D., Lezier, C., Pastuszka, P., Raffin, A., Plomion, C. and Krener, A. 2001. Genetic diversity within and among Pinus pinaster populations: comparison between AFLP and microsatellite markers. Heredity 86: 469-479.   DOI   ScienceOn
35 Nybom, H. 2004. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Molecular Ecology 13: 1143-1155.   DOI   ScienceOn
36 Moriguchi, Y., Kang, K.S., Lee, K.Y., Lee, S.W. and Kim Y.Y. 2009. Genetic variation of Picea jezoensis populations in South Korea revealed by chloroplast, mitochondirial and nuclear DNA markers. Journal of Plant Research 122: 153-160.   DOI   ScienceOn
37 Nei, M. 1972. Genetic distance between populations. American Naturalist 106: 283-292.   DOI   ScienceOn
38 Nybom, H. and Bartish, I. 2000. Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plant. Perspectives in Plant Ecology, Evolution and Systematics 3(2):93-114.   DOI   ScienceOn
39 Oosterhout, C.V., Hutchinson, W.F., Wills, P.M. and Shiply, P. 2004. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4: 535-538.   DOI   ScienceOn
40 Piry, S., Luikart G. and Cornuet, J.M. 1999. BOTTLENECK: a computer program for detecting recent reduction in the effective population size using allele frequency data. Journal of Heredity 90: 502-503.   DOI
41 Scalfi, M., Piotti, A., Rossi, M. and Piovani, P. 2009. Genetic variability of Italian southern Scots pine (Pinus sylvestris L.) populations: the rear edge of the range. European Journal of Forest Reserch 128: 377-386.   DOI   ScienceOn
42 Struss, D. and Plieske, J. 1998. The use of microsatellite markers for detection of genetic diversity in barley populations. Theoretical and Applied Genetics 97: 308-315.   DOI   ScienceOn
43 Wilson, E.H. 1920. Four new conifers from Korea. Journal of Arnold Arboretum 1: 186-190.
44 Tang, S., Dai, W., Li, M., Zhang, Y., Geng, Y., Wang, L. and Zhong, Y. 2008. Genetic diversity of relictual and endangered plant Abies ziyuanensis(Pinaceae) revealed by AFLP and SSR markers. Genetica 133: 21-30.   DOI   ScienceOn
45 Weiguo, Z., Zhihua, Z., Xuexia, M., Yong, Z., Sibao, W., Jianhua, H., Hui, X., Yile, P. and Yongping, H. 2007. A comparison of genetic variation among wild and cultivated Morus species (Moraceae: Morus) as revealed by ISSR and SSR markers. Biodiversity and Conservation 16: 275-290.   DOI   ScienceOn
46 Weir, B.S. 1990. Genetic Data Analysis. Sinauer Associates, Sinderland, MA. pp. 156-159.
47 Wright, S. 1978. Variability within and among Natural Populations. Vol. 4. The University of Chicago Press, Chicago.
48 Yeh, F.C., Yang, R.C. and Boyle, T. 1999. POPGENE ver. 1.31-Microsoft Window-based freeware for population genetic analysis. Department of Renewable Resources, University of Chicago Press. Chicago. U.S.A.