• Title/Summary/Keyword: in-position

Search Result 26,493, Processing Time 0.052 seconds

Development of Control Rod Position Indicator using Seismic-Resistance Reed Switches for Integral Reactor (내지진용 리드스위치를 이용한 일체형원자로용 위치지시기 개발)

  • Yu, Je-Yong;Kim, Ji-Ho;Huh, Hyung;Choi, Myoung-Hwan;Sohn, Dong-Seong
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.593-596
    • /
    • 2008
  • The reed switch position transmitter (RSPT) is used as a position indicator for the control rod in commercial nuclear power plants made by ABB-CE. But this position indicator has some problems when directly adopting it to the integral reactor. The Control Element Drive Mechanism (CEDM) for the integral reactor is designed to raise and lower the control rod in steps of 2mm in order to satisfy the design features of the integral reactor which are the soluble boron free operation and the use of a nuclear heating for the reactor start-up. Therefore the resolution of the position indicator for the integral reactor should be achieved to sense the position of the control rod more precisely than that of the RSPT of the ABB-CE. This paper adopts seismic resistance reed switches to the position indicator in order to reduce the damages or impacts during the handling of the position indicator and earthquake.

  • PDF

Usefulness of Prone Position on PET-CT in Breast Cancer (유방암 PET-CT 검사에서 Prone(복와위)자세의 유용성 평가)

  • Park, Hoon-Hee;Kim, Sei-Yung;Kim, Jung-Yul;Park, Min-Soo;Lim, Han-Snag;Jung, Suk;Kang, Chun-Goo;Kim, Jae-Sam;Lee, Chang-Ho;Lee, Yung-Joo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.12 no.1
    • /
    • pp.44-48
    • /
    • 2008
  • Purpose: In FDG-PET/CT of breast cancer, a sensitivity was 80~96% and a specificity was 75~95% commonly. It was valuable to identify a cancer in early stage been difficult in Mammography. Most of the PET/CT scans have been examined on supine position, so, the image of breast has been acquired by reconstructed whole body scan image. However, using prone position with a compensator, a shape of breast was reassembly shown to be real by gravity. Therefore, the purpose of this study was to evaluate diagnostic value of prone position in FDG PET-CT of breast cancer. Materials and Methods: 30 female patients with doubtful or positive breast cancer were examined. The PET-CT whole body scan was acquired at 60 minutes after $^{18}F$-FDG injection on Supine position. Then, regional breast spot scan was progressed on prone position using a compensator. Each image was evaluated by physicians blinded to patient's data, and statistical analysis did through SUVs measured in PET-CT images. Results: In 27 of 30 patients, prone position was shown accurate discrimination and diagnostic value, but in another 3 patients had a lesion 1cm below, PET-CT couldn't detect it, unlike MRI. Consequently, prone position distinguished a lesion better than Supine position, because of low degree of metamorphosis by gravity. The SUVs analysis of each position was significant (p value=0.004). Conclusion: In PET-CT of breast cancer, prone position could detect micrometastasis as well as primary lesion, better than supine position. Therefore, this study proposes that any technical change considered morphological feature like prone position can offer adequate and useful diagnostic information, together with complementary quantitative analysis.

  • PDF

A Study on the Visual Evaluation According to Changes in Width of Hem Line and Waistline Position of Flare Pants (플레어 팬츠의 바지부리 폭과 허리선 위치의 변화에 따른 시각적 평가)

  • Lee, Jung-Soon
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.14 no.4
    • /
    • pp.127-137
    • /
    • 2012
  • The purpose of this study is to recognize the differences of visual evaluation by variations in width of hem line and waistline position of the flare pants. The stimuli are 9 samples: One control group, 3 variations of the width of hem line and 3 variations of the waistline position. The data has been obtained from 44 fashion students. The data has been analyzed by Factor Analysis, Anova, Scheffe's Test and the MCA method. The results of the study are as follows: The visual evaluation by the width of hem line and waistline position of flare pants are composed of 5 factors : physical characteristics, elegance, originality, comfort, and stiffness. Among these factors, the physical characteristic is evaluated to be the most important factor. As a v isual evaluation result o f changes in the width o f hern l ine, 8 4 cm in width (the narrowest width) was highly evaluated in physical characteristics, elegance, and originality factors. For the result of changes in the waistline position, high-waisted flare pants were highly effective in physical characteristics, and also evaluated well in elegance, originality and stiffness factors. The flare pants did not show any interaction between the width of hem line and waistline position. The waistline position had more influence on visual evaluation in physical characteristics, originality and comfort factors while elegance and stiffness factors were affected by the width of hem line.

  • PDF

A Feasible Approach for the Unified PID Position Controller Including Zero-Phase Error Tracking Performance for Direct Drive Rotation Motor

  • Kim, Joohn-Sheok
    • Journal of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.74-84
    • /
    • 2009
  • The design and implementation of a high performance PID (Proportional Integral & Differential) style controller with zero-phase error tracking property is considered in this article. Unlike a ball screw driven system, the controller in a direct drive system should provide a high level of tracking performance while avoiding the problems due to the absence of the gear system. The stiff mechanical element in a direct drive system allows high precise positioning capability, but relatively high tracking ability with minimal position error is required. In this work, a feasible position controller named 'Unified PID controller' is presented. It will be shown that the function of the closed position loop can be designed into unity gain system in continuous time domain to provide minimal position error. The focus of this work is in two areas. First, easy gain tunable PID position controller without speed control loop is designed in order to construct feasible high performance drive system. Second, a simple but powerful zero phase error tracking strategy using the pre-designed function of the main control loop is presented for minimal tracking error in all operating conditions. Experimental results with a s-curve based position pattern commonly used in industrial field demonstrate the feasibility and effective performance of the approach.

Effects of Head Posture and Occlusal Splint on Swallowing Movement (두부자세 및 교합장치에 따른 연하운동의 변화)

  • Sung-Jin Moon;Kyung-Soo Han
    • Journal of Oral Medicine and Pain
    • /
    • v.21 no.1
    • /
    • pp.55-65
    • /
    • 1996
  • This study was performed to investigate the effects of head posture and occlusal splint on the vertical dimension in mandibular rest position and swallowing. Thirty health dental students ware selected lot this study and BioEGNⓡ(Bioresearch Inc., USA) was used for measuring interocclusal distance during rest - swallowing - rest - tapping movement. This swallowing movements were observed in both normal head posture(NHP) and forward head posture (FHP). Thickness of occlusal splint was about 2mm at posterior molar area and even tooth contact were achieved on light biting. The four mandibular positions at which interocclusal distance measured were swallowing position, after swallowing position in which interocclusal distance was maximum, rest position follows swallowing, and tapping position after rest. Changes of distance in each position were measured for three mandibular planes, that is, sagittal, frontal, and horizontal plane, respectively. The results obtained were as follows : 1. In normal head posture, the mandible was raised 1.03mm without splint, and 0.77mm with splint on swallowing, and there was no significant difference between the two. In horizontal plane, however, mandible was displaced more anteriorly in both swallowing position and tapping position with splint. 2. In forward head posture, the mandible was less raised with splint on swallowing, but features in horizontal plane were almost same as those in normal head posture. 3. In natural dentition, significant difference between NHP and FHP were observed in horizontal plane trajectory for swallowing and tapping position. But the difference for same positions were observed in frontal trajectory with splint. 4. Total amount of mandibular movement of two groups classified with sagittal interocclusal distance of swallowing position generally showed significant difference between the higher and the lower height group in head posture without splint. 5. Correlationship among total amount of mandibular movement for three mandibular planes were observed between sagittal plane and horizontal plane, and between sagittal plane and frontal plane in head posture without splint.

  • PDF

Feasibility Study of Source Position Verification in HDR Brachytherapy Using Scintillating Fiber

  • Moon, Sun Young;Jeong, EunHee;Lim, Young Kyung;Chung, Weon Kyu;Huh, Hyun Do;Kim, Dong Wook;Yoon, Myonggeun
    • Progress in Medical Physics
    • /
    • v.27 no.4
    • /
    • pp.213-219
    • /
    • 2016
  • The position verification of the radiation source utilized in brachytherapy forms a critical factor in determining the therapeutic efficiency. Currently, films are used to verify the source position; however, this method is encumbered by the lengthy time interval required from film scanning to analysis, which makes real-time position verification difficult. In general, the source position accuracy is usually tested in a monthly quality assurance check. In this context, this study investigates the feasibility of the real-time position verification of the radiation source in high dose rate (HDR) brachytherapy with the use of scintillating fibers. To this end, we construct a system consisting of scintillating fibers and a silicon photomultiplier (SiPM), optimize the dosimetric software setup and radiation system characteristics to obtain maximum measurement accuracy, and determine the relative ratio of the measured signals dependent upon the position of the scintillating fiber. According to the dosimetric results based on a treatment plan, in which the dwell time is set at 30 and 60 s at two dwell positions, the number of signals is 31.5 and 83, respectively. In other words, the signal rate roughly doubles in proportion to the dwell time. The source position can also be confirmed at the same time. With further improvements in the spatial resolution and scintillating fiber array, the source position can be verified in real-time in clinical settings with the use of a scintillating fiber-based system.

FFT-Based Position Estimation in Switched Reluctance Motor Drives

  • Ha, Keunsoo;Kim, Jaehyuck;Choi, Jang Young
    • Journal of Magnetics
    • /
    • v.19 no.1
    • /
    • pp.90-100
    • /
    • 2014
  • Position estimation that uses only active phase voltage and current is presented, to perform high accuracy position sensorless control of a SRM drive. By extracting the amplitude of the first switching harmonic terms of phase voltage and current for a PWM period through Fast Fourier Transform (FFT), the flux-linkage and position are estimated without external hardware circuitry, such as a modulator and demodulator, which result in increased cost, as well as large position estimation error, produced when the motional back EMF is ignored near zero speed. A two-phase SRM drive system, consisting of an asymmetrical converter and a conventional closed-loop PI current controller, is utilized to validate the performance of the proposed position estimation scheme in comprehensive operating conditions. It is shown that the estimated values very closely track the actual values, in dynamic simulations and experiments.

Accurate Position and Instantaneous Speed Observer for Motor Drive System using Novel Speed Estimator (속도 추정기를 이용한 전동기 구동 시스템의 정밀한 위치 및 순시 속도 관측기의 개발)

  • Kim, Hui-Uk;Kim, Yong-Seok;Seol, Seung-Gi
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.11
    • /
    • pp.625-631
    • /
    • 1999
  • In this paper, an accurate position control using new estimator which estimates the instantaneous speed and accurate position with a low precision shaft encoder is proposed. The overall performance of position control system is strongly depend on the accuracy of the position information and the performance of the speed controller in low speed range. In this paper the position and speed of the motor are obtained from Kalman filter which is an optimal full order estimator. This estimator has good performance even in very low speed range include standstill. The simulation and experimental results confirm the validity of the proposed estimation and control scheme.

  • PDF

A Study of Eliminating NNSS Speed Error by Use of Deviation of NNSS Position Error (NNSS 선위오차의 편차를 이용한 속도오차소법에 관한 연구)

  • 양창진
    • Journal of the Korean Institute of Navigation
    • /
    • v.4 no.1
    • /
    • pp.1-18
    • /
    • 1980
  • As the NNSS system calculates ship's position by the doppler shift of the NNSS radio waves caused by the change of the distance between Transit Satellite and the ship, ship's speed error inevitably results in the position error, and moreover this kind of erroris most dominant compared with other errors especially in high speed ships and airplanes. Most NNSS receivers now in use have adoptedsuccessive short doppler counts as positioning data and by investigating the dispersion of serval successive positions calculated and by neglecting the mean position having dispersion of over certain threshold level, more accurate adn safe position is to be achieved. This paper proposes the method of finding ship's true speed by selecting a speed having least position dispersion for given successive doppler counts. And by computer simulation it was verified that the method proposed here is reasonable in finding the ship's desired correct speed together with the correct ship's position.

  • PDF

Design of the Magnetization System of the Permanent Magnet in Magnetic Sensors (마그네틱 위치 센서용 영구자석의 착자 시스템 설계)

  • Jeong, Seung-Ho;Lee, Chul-Kyu;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1029-1031
    • /
    • 2005
  • A magnetic position sensor is a apparatus that detect the rotating position by measuring the value of the flux density of the rotating position. In this paper, the magnetization system of the permanent magnet in the magnetic position sensor which detects the rotating position was designed. The permanent magnet was magnetized for the flux density into the hole element to be sinusoidal distribution according to the rotating position. To make the sinusoidal distribution of flux density, the magnetization values according to the position in permanent magnet were varied by adjusting the air gap between the pole of the magnetization fixture and the surface of the permanent magnet.

  • PDF