Browse > Article
http://dx.doi.org/10.4283/JMAG.2014.19.1.090

FFT-Based Position Estimation in Switched Reluctance Motor Drives  

Ha, Keunsoo (Samsung Electro-Mechanics)
Kim, Jaehyuck (Wonkwang University)
Choi, Jang Young (Chungnam National University)
Publication Information
Abstract
Position estimation that uses only active phase voltage and current is presented, to perform high accuracy position sensorless control of a SRM drive. By extracting the amplitude of the first switching harmonic terms of phase voltage and current for a PWM period through Fast Fourier Transform (FFT), the flux-linkage and position are estimated without external hardware circuitry, such as a modulator and demodulator, which result in increased cost, as well as large position estimation error, produced when the motional back EMF is ignored near zero speed. A two-phase SRM drive system, consisting of an asymmetrical converter and a conventional closed-loop PI current controller, is utilized to validate the performance of the proposed position estimation scheme in comprehensive operating conditions. It is shown that the estimated values very closely track the actual values, in dynamic simulations and experiments.
Keywords
switched reluctance motor; position estimation; incremental inductance; first switching harmonic; fast fourier transform;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Jun and D. Zhiquan, IEEE Trans. Power Electron. 27, 3410 (2012).   DOI   ScienceOn
2 R. Krishnan, ICEMS. International Conference on, 472 (2007).
3 C. R. Neuhaus, N. H. Fuengwrodsakul, and R. W. D. Doncker, IEEE Trans. Power Electron. 23, 2257 (2008).
4 A. Tenconi, F. Profumo, S. E. Bauer, and M. D. Hennen, IEEE Trans. Ind. Electron. 55, 3619 (2008).
5 P. C. Desai, M. Krishnamurthy, N. Schofield, and A. Emadi, IEEE Trans. Ind. Electron. 57, 649 (2010).   DOI   ScienceOn
6 N. McNeill, D. Holliday, and P. H. Mellor, IEEE Trans. Power Electron. 24, 548 (2009).   DOI   ScienceOn
7 J.-Y. Chai, Y.-C. Chang, and C.-M. Liaw, IEEE Trans. Power Electron. 25, 1135 (2010).   DOI   ScienceOn
8 I. Kioskeridis and C. Mademlis, IEEE Trans. Power Electron. 24, 301 (2009).   DOI   ScienceOn
9 K. Ha, R. Kim, and R. Krishnan, IEEE Trans. Ind. Electron. 58, 5352 (2011).   DOI   ScienceOn
10 H. Abootorabi Zarchi, J. Soltani, and G. Arab Markadeh, IEEE Trans. Ind. Electron. 57, 375 (2010).   DOI   ScienceOn
11 G. Foo and M. F. Rahman, IEEE Trans. Ind. Electron. 57, 1270 (2010).   DOI   ScienceOn
12 C. J. Bateman, B. C. Mecrow, A. C. Clothier, and P. P. Acarnley, IEEE Trans. Ind. Appl. 46, 2329 (2010).   DOI   ScienceOn
13 I. Husain and M. Ehsani, IEEE Trans. Ind. Appl. 30, 665 (1994).   DOI   ScienceOn
14 K. R. Geldhof, A. P. M. Van den Bossche, and J. A. Melkebeek, IEEE Trans. Ind. Electron. 57, 2954 (2010).   DOI   ScienceOn
15 G. Pasquesoone, R. Mikail, and I. Husain, IEEE Trans. Ind. Appl. 47, 1724 (2011).   DOI   ScienceOn
16 Z. Lin, D. Reay, B. Williams, and X. He, IET Electric Power Appl. 4, 67 (2010).   DOI   ScienceOn
17 E. C. Ifeachor and B. W. Jervis, Digital Signal Processing - A Practical Approach, 1993.
18 M. Wellner and R. Krishnan, Property of Virginia Tech. (2003).
19 D.-H. Lee, J. Liang, Z.-G. Lee, and J.-W. Ahn, IEEE Trans. Ind. Electron. 56, 3021 (2009).   DOI   ScienceOn
20 TMS320x280x, 2801x, 2804x DSP Analog-to-Digital converter: Texas Instruments (2005).
21 Y.-C. Chang and C.-M. Liaw, IEEE Trans. Power Electron. 23, 445 (2008).   DOI   ScienceOn
22 L. O. Henriques, L. G. Rolim, W. I. Suemistu, J. A. Dente, and P. J. Branco, IEEE Trans. Power Electron. 26, 3330 (2011).   DOI   ScienceOn
23 S. G. Oh and R. Krishnan, IEEE Trans. Ind. Appl. 43, 1247 (2007).   DOI   ScienceOn