• Title/Summary/Keyword: in-plane and out-of-plane waves

Search Result 49, Processing Time 0.021 seconds

Influence of Tether Length in the Response Behavior of Square Tension Leg Platform in Regular Waves

  • El-gamal, Amr R.;Essa, Ashraf
    • International Journal of Ocean System Engineering
    • /
    • v.4 no.1
    • /
    • pp.19-28
    • /
    • 2014
  • The tension leg platform (TLP) is a vertically moored structure with excess buoyancy. The TLP is regarded as moored structure in horizontal plan, while inherit stiffness of fixed platform in vertical plane. In this paper, a numerical study using modified Morison equation was carried out in the time domain to investigate the influence of nonlinearities due to hydrodynamic forces and the coupling effect between surge, sway, heave, roll, pitch and yaw degrees of freedom on the dynamic behavior of TLP's. The stiffness of the TLP was derived from a combination of hydrostatic restoring forces and restoring forces due to cables and the nonlinear equations of motion were solved utilizing Newmark's beta integration scheme. The effect of tethers length and wave characteristics such as wave period and wave height on the response of TLP's was evaluated. Only uni-directional waves in the surge direction was considered in the analysis. It was found that for short wave periods (i.e. 10 sec.), the surge response consisted of small amplitude oscillations about a displaced position that is significantly dependent on tether length, wave height; whereas for longer wave periods, the surge response showed high amplitude oscillations about that is significantly dependent on tether length.

Ultrasonic waves in a single walled armchair carbon nanotube resting on nonlinear foundation subjected to thermal and in plane magnetic fields

  • Selvamani, Rajendran;Jayan, M. Mahaveer Sree;Ebrahimi, Farzad
    • Coupled systems mechanics
    • /
    • v.10 no.1
    • /
    • pp.39-60
    • /
    • 2021
  • The present paper is concerned with the study of nonlinear ultrasonic waves in a magneto thermo (MT) elastic armchair single-walled carbon nanotube (ASWCNT) resting on polymer matrix. The analytical formulation is developed based on Eringen's nonlocal elasticity theory to account small scale effect. After developing the formal solution of the mathematical model consisting of partial differential equations, the frequency equations have been analyzed numerically by using the nonlinear foundations supported by Winkler-Pasternak model. The solution is obtained by ultrasonic wave dispersion relations. Parametric work is carried out to scrutinize the influence of the non local scaling, magneto-mechanical loadings, foundation parameters, various boundary condition and length on the dimensionless frequency of nanotube. It is noticed that the boundary conditions, nonlocal parameter, and tube geometrical parameters have significant effects on dimensionless frequency of nano tubes. The results presented in this study can provide mechanism for the study and design of the nano devices like component of nano oscillators, micro wave absorbing, nano-electron technology and nano-electro- magneto-mechanical systems (NEMMS) that make use of the wave propagation properties of armchair single-walled carbon nanotubes embedded on polymer matrix.

Wave Resistance of a Ship at Low Froude Numbers (비 Froude수에 있어서 선체의 조파저항)

  • 김인철
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.17 no.2
    • /
    • pp.109-113
    • /
    • 1981
  • Most existing theories on ship waves and wave resistance are based on the perturbation of the flow field by a small pararr.eter which specifies the slenderness of the ship hull. Since however, ship hulls in practice are neither so slender nor thin enough to secure the validity of the linearized theory, the agreen:ent between the theoretical prediction and the experimental result is not generally satisfactory. The author pointed out that the contribution by the non-linear term in the free surface condition can be represented by sorr.e source distribution over the still water plane. This paper leads to a forrr.ula for the wave resistance of not slender ships at low Froude nurr.bers. and deals with the asynptotic expression. As a nurr.erical example, the wave resistance of Wigley model is calculated, and the result is compared with experimental values. It is concluded that the wave resistance coefficient varies in the rate of Fn6 at low speed limit in general. A comparison with the result derived from the linearized free surface condition shows that the non-linearity of the free surface is irr portant at low speed.

  • PDF

Drift Motion Analyses for a FPSO with Spread Mooring Systems (다점 계류된 원유 저장선에 대한 표류 운동 해석)

  • 이호영;임춘규;신현경
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.222-227
    • /
    • 2001
  • The time simulation of slow drift motions of moored FPSO in waves is presented. The equation of motion based on Cummin's theory of impulse responses are employed, and are consisted of horizonal plane -surge, sway and yaw. The added mass coefficients, wave damping coefficients, first order wave exciting forces and the second order wave drift forces involved in the equations are obtained from a three-dimensional panel method in the frequency domain. The mooring lines are modeled quasistatically as catenary for chains and touchdown. As for numerical example, time domain analyses are carried out for a box-type FPSO in long crest irregular wave condition.

  • PDF

Infinite Elements for Analysis of Diffraction and Radiation Problems in the Vertical Plane (연직 2차원 회절 및 방사문제 해석을 위한 무한요소)

  • 박우선;이달수;오영민;정원무
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.3 no.4
    • /
    • pp.235-243
    • /
    • 1991
  • This paper is concerned with developing infinite elements which are applicable to wave diffraction and radiation problems in the vertical plane. The near need region surrounding the solid body is modeled using conventional finite elements. but the far fold region is represented using the infinite elements developed in this study. The shape functions for the infinite elements are derived from the analytical eigenseries solution of the scattered waves in the far field region. The system matrices of the elements are constructed by performing the integration in the infinite direction analytically to achieve computational efficiency. Numerical analysis is carried out for two floating bodies with different cross-sectional shapes to prove the efficiency and validity of the elements. Numerical experiments are also performed to determine the suitable location of the infinite elements which directly affect accuracy and efficiency of the solution.

  • PDF

Experimental Study on Corrosion Detection of Aluminum Alloy Using Lamb Wave Mixing Technique (램파 혼합 기법을 이용한 알루미늄 합금의 부식 결함 검출에 대한 실험 연구)

  • Choi, Heeung;Lee, Jaesun;Cho, Younho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.11
    • /
    • pp.919-925
    • /
    • 2016
  • In this study, the Lamb wave mixing technique, which is basised on advanced research on the nonlinear bulk wave mixing technique, is applied for corrosion detection. To demonstrate the validity of the Lamb wave mixing technique, an experiment was performed with normal and corroded specimens. Comparison group in an experimentation are selected to mode and frequency with dominant in-plane displacement and out-of-plane displacement of Lamb waves. The results showed that the Lamb wave mixing technique can monitor corrosion defects, and it has a trend similar to that of the conventional Lamb wave technique. It was confirmed that the dominant displacement and mode matching the theory were generated. Flaw detectability is determined depending on displacement ratio instead of using the measurement method and mode selection.

The Evaluation of Ship's Cruising Ability and Propulsive Performance in a Seaway (선박의 풍파중 항해능력 및 추진성능 평가에 관한 연구)

  • 김순갑
    • Journal of the Korean Institute of Navigation
    • /
    • v.14 no.2
    • /
    • pp.15-31
    • /
    • 1990
  • Recently, there is a tendency to design the large full ships with lower-powered engine as the means for energy saving in ship's navigation at seas. Such a lower-powered ship is anticipated to show the different propulsive performance in rough seas, because the fluctuation of main engine load of lower powered ship is relatively large as compared with higher-powered ship is relatively large as compared with higher-powered ship. The fluctuation of propeller load is nonlinear at racing condition in waves. It is due to the variation of inflow velocity into propeller, the propeller immersion and the characteristics of engine governor. In this paper, the theoretical calculation of the nominal speed loss and the numerical simulation for the nonlinear load fluctuation of a model ship in rough seas are carried out. From the results of calculation, the following are discussed. (1) The ratio of nominal speed loss to the speed in still water. (2) The manoeuvring ability of ship and the operational ability of main engine in a seaway. (3) A method of the evaluation for the fluctuation of propeller torque and revolution on the engine characteristics plane. (4) The effect of engine governor characteristics on the propeller load fluctuation.

  • PDF

Wave Exciting Forces Acting on Ships in Following Seas (추파중(追波中)에서 항행(航行)하는 선체(船體)에 작용(作用)하는 파강제력(波强制力)에 관(關)한 연구(硏究))

  • Kyoung-Ho,Son;Jin-Ahn,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.21 no.3
    • /
    • pp.27-34
    • /
    • 1984
  • When a ship is travelling in following seas, the encounter frequency is reduced to be very low. In that case broaching phenomenon is most likely to occur, and it may be due to wave exciting forces acting on ships. It is thought that the wave exciting forces acting on ships in following seas almost consist of two components. One is hydrostatic force due to Froude-Krylov hypothesis, and the other is hydrodynamic lift force due to orbital motion of water particles below the wave surface. In the present paper, the emphasis is laid upon wave exciting sway force, yaw moment and roll moment acting on ships in following seas. The authers take the case that the component of ship speed in the direction of wave propagation is equal to the wave celerity, i.e., the encounter frequency is zero. Hydrostatic force components are calculated by line integral method on Lewis form plane, and hydrodynamic lift components are calculated by lifting surface theory. Furthermore captive model tests are carried out in regular following waves generated by means of a wave making board. Through the comparison between calculated and measured values, it is confirmed that the wave exciting forces acting on ships in following seas can be predicted in terms of present method to a certain extent.

  • PDF

Aerodynamic control capability of a wing-flap in hypersonic, rarefied regime

  • Zuppardi, Gennaro
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.1
    • /
    • pp.45-56
    • /
    • 2015
  • The attitude aerodynamic control is an important subject in the design of an aerospace plane. Usually, at high altitudes, this control is fulfilled by thrusters so that the implementation of an aerodynamic control of the vehicle has the advantage of reducing the amount of thrusters fuel to be loaded on board. In the present paper, the efficiency of a wing-flap has been evaluated considering a NACA 0010 airfoil with a trailing edge flap of length equal to 35% of the chord. Computational tests have been carried out in hypersonic, rarefied flow by a direct simulation Monte Carlo code at the altitudes of 65 and 85 km, in the range of angle of attack 0-40 deg. and with flap deflection equal to 0, 15 and 30 deg.. Effects of the flap deflection have been quantified by the variations of the aerodynamic force and of the longitudinal moment. The shock wave-boundary layer interaction and the shock wave-shock wave interaction have been also considered. A possible interaction of the leading edge shock wave and of the shock wave arising from the vertex of the convex corner, produced on the lower surface of the airfoil when the flap is deflected, generates a shock wave whose intensity is stronger than those of the two interacting shock waves. This produces a consistent increment of pressure and heat flux on the lower surface of the flap, where a thermal protection system is required.

Variation of Wave Set-Up/set-Down due to the Evaluation of Radiation Stress (라디에이션 응력의 평가방법에 따른 평균수위변화)

  • 김경호;차기욱;조재희;윤영호
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.5 no.4
    • /
    • pp.263-270
    • /
    • 1993
  • A study on the variation of radiation stress and mean water level is carried out for the shoaling and breaking waves on a plane beach. In general, the radiation stresses computed based on the linear wave theory are overestimated. which results in the discrepancy between the computed results and laboratory data of mean water level in the surf zone. In this paper, by modifying the Svendsen's approach (1984), radiation stress is expressed in terms of water depth. The computed results are compared with the results calculated by a linear wave theory and Sawaragi's approach (1984) based on the spectrum of breaking wave components, and published laboratory data. The computed results of the modifed Svendsen's approach are favourably compared with the laboratory data.

  • PDF