DOI QR코드

DOI QR Code

Experimental Study on Corrosion Detection of Aluminum Alloy Using Lamb Wave Mixing Technique

램파 혼합 기법을 이용한 알루미늄 합금의 부식 결함 검출에 대한 실험 연구

  • Choi, Heeung (School of Mechanical Engineering, Pusan Nat'l Univ.) ;
  • Lee, Jaesun (School of Mechanical Engineering, Pusan Nat'l Univ.) ;
  • Cho, Younho (School of Mechanical Engineering, Pusan Nat'l Univ.)
  • Received : 2016.05.11
  • Accepted : 2016.08.24
  • Published : 2016.11.01

Abstract

In this study, the Lamb wave mixing technique, which is basised on advanced research on the nonlinear bulk wave mixing technique, is applied for corrosion detection. To demonstrate the validity of the Lamb wave mixing technique, an experiment was performed with normal and corroded specimens. Comparison group in an experimentation are selected to mode and frequency with dominant in-plane displacement and out-of-plane displacement of Lamb waves. The results showed that the Lamb wave mixing technique can monitor corrosion defects, and it has a trend similar to that of the conventional Lamb wave technique. It was confirmed that the dominant displacement and mode matching the theory were generated. Flaw detectability is determined depending on displacement ratio instead of using the measurement method and mode selection.

본 연구에서는 비선형 체적파 혼합 기법의 선행연구를 토대로 램파 기법에 적용하여 램파 혼합 기법에 대한 연구를 수행하였다. 램파 혼합 기법의 타당성을 증명하기 위해 결함이 없는 시편과 부식에 의해 발생된 표면 결함이 있는 시편에 대해 실험을 진행하였다. 실험 대조군으로는 램파의 지배적인 면내변위와 면외변위를 가지는 모드 및 주파수로 선정하였다. 그 결과 램파 혼합 기법으로도 결함 검출이 가능하였고, 기존의 램파 기법의 경향성과 유사하게 나타났다. 그리고 이론과 동일한 지배적인 변위와 모드가 발생된 것을 확인 할 수 있었다. 그러나 결함 검출 성능은 측정 방법 및 단순 모드 선정에 따라 결정되는 것이 아니라 변위 비율에 따라 결정된다.

Keywords

References

  1. Bermes, C., Kim, J. Y., Qu, J. and Jacobs, L. J., 2008, "Nonlinear Lamb Waves for the Detection of Material Nonlinearity," Mechanical Systems and Signal Processing, Vol. 22, No. 3, pp. 638-646. https://doi.org/10.1016/j.ymssp.2007.09.006
  2. Jhang, K. Y., 2009, "Nonlinear Ultrasonic Techniques for Nondestructive Assessment of Micro Damage in Material: a Review," International Journal of Precision Engineering and Manufacturing, Vol. 10, No. 1, pp. 123-135. https://doi.org/10.1007/s12541-009-0019-y
  3. Yost, W. T. and Cantrell, J. H., 1990, "Materials Characterization Using Acoustic Nonlinearity Parameters and Harmonic Generation: Engineering Materials," Review of Progress in Quantitative Nondestructive Evaluation, Vol. 9, pp. 1669-1676.
  4. Li, W., Lee, J. and Cho, Y., 2010, "Study of Ultrasonic Nonlinearity in Heat-treated Material," Trans. Korean Soc. Mech. Eng. A, Vol. 34, No. 6, pp. 751-756. https://doi.org/10.3795/KSME-A.2010.34.6.751
  5. Kim, G. J., Jang, G. Y. and Hisashi, Y., 2001, "The Evaluation of Partially Degraded Material using Nonlinear Propagation Characteristics of Ultrasonic Wave," Trans. Korean Soc. Mech. Eng. A, Vol. 25, No. 2, pp. 214-219. https://doi.org/10.22634/KSME-A.2001.25.2.214
  6. Lee, J. G. and Kobett, D. R., 1963, "Interaction of Elastic Waves in an Isotropic Solid," The Journal of the Acoustical Society of America, Vol. 35, No. 1, pp. 5-10. https://doi.org/10.1121/1.1918405
  7. Liu, M., Tang, G., Jacobs, L. J. and Qu, J., 2011, "Measuring Acoustic Nonlinearity by Collinear Mixing Waves," AIP Conference Publishing, Vol. 1335, No. 1, pp. 322-329.
  8. Croxford, A. J., Wilcox, P. D., Drinkwater, B. W., Nagy, P. B, 2009, "The Use of Non-collinear Mixing for Nonlinear Ultrasonic Detection of Plasticity and Fatigue," The Journal of the Acoustical Society of America, Vol. 126, No. 5, pp. EL117-EL122. https://doi.org/10.1121/1.3231451
  9. Liu, M., Tang, G., Jacobs, L. J., Qu, J., Thompson, D. O. and Chimenti, D. E., 2012, "A Nonlinear Wave Mixing Method for Detecting Alkali-Silica Reactivity of Aggregates," AIP Conference Proceedings, Vol. 1430, No. 1, pp. 1524-1531.
  10. Jingpin, J., Junjun, S., Guanghai, L., Bin, W. and Cunfu, H., 2015, "Evaluation of the Intergranular Corrosion in Austenitic Stainless Steel Using Collinear Wave Mixing Method," NDT & E International, Vol. 69, pp. 1-8. https://doi.org/10.1016/j.ndteint.2014.09.001
  11. Rose, J. L., 2004, Ultrasonic Waves in Solid Media. Cambridge University Press, Cambridge, pp. 101-119.
  12. Bermes, C., Kim, J. Y., Qu, J. and Jacobs, L. J., 2007, "Experimental Characterization of Material Non-linearity Using Lamb Waves," Applied Physics Letters, Vol. 90, No. 2, pp. 021901-021901-3. https://doi.org/10.1063/1.2431467
  13. Matsuda, N. and Biwa, S., 2011, "Phase and Group Velocity Matching for Cumulative Harmonic Generation in Lamb Waves," Journal of Applied Physics, Vol. 109, No. 9, pp. 094903-094903-11. https://doi.org/10.1063/1.3569864
  14. Deng, M., Wang, P. and Lv, X., 2005, "Experimental Observation of Cumulative Secondharmonic Generation of Lamb-wave Propagation in an Elastic Plate," Journal of Physics D: Applied Physics, Vol. 38, No. 2, p. 344. https://doi.org/10.1088/0022-3727/38/2/020