• Title/Summary/Keyword: in-phase and quadrature

Search Result 329, Processing Time 0.024 seconds

Additional Diversity Gain in OFDM Systems under the Influence of IQ Imbalances (IQ 불균형에 의하여 왜곡된 OFDM 시스템에서의 다이버시티 이득 획득 기법)

  • Jin, Young-Hwan;Kwon, Ji-Hyeon;Lee, Yu-Ro;Ahn, Jae-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.12A
    • /
    • pp.1205-1213
    • /
    • 2006
  • In this paper, we analyze the IQ(In-phase/Quadrature) imbalance effects at both transmitter and receiver side of OFDM(Orthogonal Frequency Division Multiplexing) and show that IQ imbalance is the parameter to improve the performance using ML and OSIC scheme. Especially, we can archive the diversity gain due to the IQ imbalance in multipath fading environment. In addition, new preamble format is proposed, which enable estimation of the channel and IQ imbalance parameters to maximize the diversity gain. Significant performance improvement is achieved by using the ML(Maximum Likelihood)and OSIC(Ordered Successive Interference Cancellation) with compensation compared to a standard receiver with no compensation for IQ imbalance and proposed channel estimation scheme achieves the better performance improvement than conventional.

Derivation and Analysis of the BER Closed Form in the OFDM Communication System with IQ Imbalance

  • Hieu Nguyen Thanh;Kang Byung-Su;Lee Kwang-Chun;Ryu Heung-Gyoon
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.3
    • /
    • pp.182-188
    • /
    • 2006
  • Orthogonal frequency division multiplexing(OFDM) is very useful for the wireless communication system. However, OFDM is very sensitive to the radio frequency impairments. One of the most important major impairments is the IQ imbalance between in-phase(l) and quadrature(Q) branches in the up and down-conversion. IQ imbalance can be divided into phase and amplitude imbalances. These imbalances make constellation of signal to expand and rotate. The performance of system is severely degraded. In this paper, a closed-form for the bit error probability of the OFDM signal in IQ imbalance environment is derived in terms of the function of phase and amplitude imbalance parameters. So, it will be convenient and useful to evaluate the performance of OFDM communication system with IQ imbalance. It is confirmed that computer simulation results closely match with the results of the analytical derivation. When phase imbalance $\varphi=20^{\circ}$, amplitude imbalance $\varepsilon=0.1$; 0.3; 0.4; 0.5, BER at $10^{-5}$ is severely degraded by 1.8 dB, 3.12 dB, 4.72, and 8.44 dB, respectively.

Design and Analysis of a Single-phase Induction Motor with Windings in Space Non-quadrature (비직교 권선 분포를 갖는 단상유도전동기의 해석 및 설계)

  • Choi, Myoung-Hyun;Kim, Byung-Taek
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.70-72
    • /
    • 2009
  • 본 논문에서는 일반적인 단상유도기의 권선 배치를 가지는 경우, 즉 주권선과 보조권선의 배치가 임의의 각을 가지는 경우에 대하여 등가회로를 구성하였다. 이때, 등가회로를 이용하여 최적 효율 확보 방법으로 평형 운전 및 고정자 동손 최소화를 적용하였다. 설계된 전동기에 대해 2차원 유한요소해석을 수행함으로써 비직교 권선 분포 설계 시 자기적 평형상태와 이로 인한 철손 및 회전자 저항손 저감 및 효율 개선 효과를 검증하였다.

  • PDF

A Study on the Performance Analysis of 4-ary Scaling Wavelet Shift Keying (4-ary 스케일링 웨이브릿 편이 변조 시스템의 성능 분석에 관한 연구)

  • Jeong, Tae-Il;Ryu, Tae-Kyung;Kim, Jong-Nam;Moon, Kwang-Seok;Kim, Hyun-Deok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.5
    • /
    • pp.1155-1163
    • /
    • 2010
  • An algorithm of the conventional wavelet shift keying is carried out that the scaling function and wavelet are encoded to 1(mark) and 0(space) for the input binary data, respectively. Two bit modulation technique which uses four carrier frequencies is existed. Four carrier frequencies are defined as scaling function, inversed scaling function, wavelet, and inversed wavelet, which are encoded to 10, 11, 00 and 01, respectively. In this paper, we defined 4-ary SWSK (4-ary scaling wavelet shift keying) which is two bit modulation, and it is derived to the probability of bit error and symbol error of the defined system from QPSK. In order to analyze to the performance of 4-ary SWSK, we are obtained in terms of the probability of bit error and symbol error for QPSK (quadrature phase shift keying), MFSK(M-ary frequency shift keying) and proposed method. As a results of simulation, we confirmed that the proposed method was superior to the performance in terms of the probability of bit error and symbol error.

Chaos QPSK Modulated Beamspace MIMO System Using ESPAR Antenna (ESPAR 안테나를 사용하는 카오스 QPSK 변조 빔 공간 MIMO 시스템)

  • Lee, Jun-Hyun;Bok, Jun-Yeong;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.2
    • /
    • pp.77-85
    • /
    • 2014
  • Recently, utilization of MIMO(Multi-Input Multi-Output) system using array antennas is evaluated significantly according to the extension of high-capacity and high-speed communication services. However, MIMO system has disadvantages such as high-complexity and high-power-consumption, because RF(Radio Frequency) chain is required as antenna number, and several array antenna is used in conventional MIMO system. In order to solve these problems, research about beamspace MIMO system using ESPAR(Electronically Steerable Parasitic Array Radiator) antenna that has single RF chain by using one active antenna and several parasitic elements has been studied actively. Beamspace MIMO system using ESPAR antenna is possible to solve the problems of conventional MIMO system, because this system is composed by single RF chain. In this paper, in order to improve the system security, chaos communication algorithm that has characteristics such as non-periodic, non-predictability, easy implementation and initial condition is applied to QPSK (Quadrature Phase Shift Keying) modulated beamspace MIMO system. We design the chaos QPSK modulated beamspace MIMO system, and evaluate SER performance of this system.

Development of Deep Learning Model for Fingerprint Identification at Digital Mobile Radio (무선 단말기 Fingerprint 식별을 위한 딥러닝 구조 개발)

  • Jung, Young-Giu;Shin, Hak-Chul;Nah, Sun-Phil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.1
    • /
    • pp.7-13
    • /
    • 2022
  • Radio frequency fingerprinting refers to a methodology that extracts hardware-specific characteristics of a transmitter that are unintentionally embedded in a transmitted waveform. In this paper, we put forward a fingerprinting feature and deep learning structure that can identify the same type of Digital Mobile Radio(DMR) by inputting the in-phase(I) and quadrature(Q). We proposes using the magnitude in polar coordinates of I/Q as RF fingerprinting feature and a modified ResNet-1D structure that can identify them. Experimental results show that our proposed modified ResNet-1D structure can achieve recognition accuracy of 99.5% on 20 DMR.

Performance Comparison of Image Transmission in Underwater Acoustic Environment (수중 음향 환경에서의 영상 전송 성능 비교분석)

  • Lee, Seung-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.19-29
    • /
    • 2008
  • Underwater acoustic(UWA) communication is one of the most difficult field in terms of severe channel environments such as multipath propagation, high temporal and spatial variability of channel conditions. Therefore, it is important to model and analyze the characteristics of underwater acoustic channel such as multipath propagation, transmission loss, reverberation, and ambient noise. In this paper, UWA communication channel is modeled with a ray tracing method and applied to image transmission. Quadrature phase shift keying(QPSK) and multichannel decision feedback equalizer(DFE) are utilized as phase-coherent modulation method and equalization technique, respectively. The objective is to improve the performance of the image transmission using vertical sensor array instead of single sensor in the viewpoint of bit error rate(BER), constellation diagram, and received image quality.

Experimental Performance Evaluation of MIMO Underwater Acoustic Communication in Water Tank (수조에서 MIMO 수중음향통신의 실험적 성능 고찰)

  • Gwun, Byung-Chul;Kim, Ki-Man
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.7
    • /
    • pp.1577-1582
    • /
    • 2013
  • In this paper, we have analyzed the performance of MIMO (Multi-Input Multi-Output) underwater acoustic communication by using the acquired data via the experiments in water tank. First of all, in the pursuit of this aim, we have measured the channel transfer characteristics at several transceiver locations. The transmitted signal was modulated by QPSK(Quadrature Phase Shit Keying) and the received signal was recovered through the detector that contains the zero forcing equalizer. A maximum 30~40 ms delay was appeared because of physically closed water tank environment that has the harsh multi-path transmission conditions. In result of experiment, even though the bit error rate showed comparatively large when $2{\times}2$ MIMO system with two transmitters and receivers was considered. However, we confirmed it has approximately 15% enhanced performance compared with SISO (Single-Input Single-Output) system.

Investigation on fluid-particle velocity double correlation in fluid- particle two-phase turbulent flows (유체에 입자가 부상된 2상난류운동에서 유체-입자속도 2차상관관계에 관한 연구)

  • 양선규;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.6
    • /
    • pp.1438-1449
    • /
    • 1988
  • An analysis of radiative heat transfer has been conducted on axisymmetric finite cylindrical media. It is assumed that the temperature in the media is uniformly distributed and the boundaries are diffusely emitting and reflecting at a constant temperature. The scattering phase function is represented by the delta-Eddington approximation to account for highly forward scattering by particulates just as in the combustion system. Exact numerical solutions are obtained by Gaussian quadrature method and compared with P-1 and P-3 approximation solutions to verify their engineering application limit. The effects of optical thickness, scattering albedo, wall emissivity and aspect ratio are investigated. The results show that P-3 approximation is found to be in good agreement with the exact solution.

Sliced Multi-modulus Blind Equalization Algorithm

  • Abrar, Shafayat;Axford, Roy A. Jr.
    • ETRI Journal
    • /
    • v.27 no.3
    • /
    • pp.257-266
    • /
    • 2005
  • Many multi-modulus blind equalization algorithms (MMA) have been presented in the past to overcome the undesirable high misadjustment exhibited by the well-known constant modulus algorithm. Some of these MMA schemes, specifically tailored for quadrature amplitude modulation (QAM) constellations, have also been proved to fix the phase offset error without needing any rotator at the end of the equalizer stage. In this paper, a new multi-modulus algorithm is presented for QAM signals. The contribution lies in the technique to incorporate the sliced symbols (outcomes of decision device) in the multi-modulus-based weight adaptation process. The convergence characteristics of the proposed sliced multi-modulus algorithm (S-MMA) is demonstrated by way of simulations, and it is shown that it gives better steady-state performance in terms of residual inter-symbol interference and symbol-error rate. It has also been shown that the proposed algorithm exhibits lesser steady-state misadjustment compared to the best reported MMA.

  • PDF