• Title/Summary/Keyword: in vivo-induced genes

Search Result 153, Processing Time 0.023 seconds

Improved Production of Long-Chain Fatty Acid in Escherichia coli by an Engineering Elongation Cycle During Fatty Acid Synthesis (FAS) Through Genetic Manipulation

  • Jeon, Eunyoung;Lee, Sunhee;Lee, Seunghan;Han, Sung Ok;Yoon, Yeo Joon;Lee, Jinwon
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.7
    • /
    • pp.990-999
    • /
    • 2012
  • The microbial biosynthesis of fatty acid of lipid metabolism, which can be used as precursors for the production of fuels of chemicals from renewable carbon sources, has attracted significant attention in recent years. The regulation of fatty acid biosynthesis pathways has been mainly studied in a model prokaryote, Escherichia coli. During the recent period, global regulation of fatty acid metabolic pathways has been demonstrated in another model prokaryote, Bacillus subtilis, as well as in Streptococcus pneumonia. The goal of this study was to increase the production of long-chain fatty acids by developing recombinant E. coli strains that were improved by an elongation cycle of fatty acid synthesis (FAS). The fabB, fabG, fabZ, and fabI genes, all homologous of E. coli, were induced to improve the enzymatic activities for the purpose of overexpressing components of the elongation cycle in the FAS pathway through metabolic engineering. The ${\beta}$-oxoacyl-ACP synthase enzyme catalyzed the addition of acyl-ACP to malonyl-ACP to generate ${\beta}$-oxoacyl-ACP. The enzyme encoded by the fabG gene converted ${\beta}$-oxoacyl-ACP to ${\beta}$-hydroxyacyl-ACP, the fabZ catalyzed the dehydration of ${\beta}$-3-hydroxyacyl-ACP to trans-2-acyl-ACP, and the fabI gene converted trans-2-acyl-ACP to acyl-ACP for long-chain fatty acids. In vivo productivity of total lipids and fatty acids was analyzed to confirm the changes and effects of the inserted genes in E. coli. As a result, lipid was increased 2.16-fold higher and hexadecanoic acid was produced 2.77-fold higher in E. coli JES1030, one of the developed recombinants through this study, than those from the wild-type E. coli.

Hemistepsin A inhibits T0901317-induced lipogenesis in the liver

  • Kim, Jae Kwang;Cho, Il Je;Kim, Eun Ok;Lee, Dae Geon;Jung, Dae Hwa;Ki, Sung Hwan;Ku, Sae Kwang;Kim, Sang Chan
    • BMB Reports
    • /
    • v.54 no.2
    • /
    • pp.106-111
    • /
    • 2021
  • Hemistepsin A (HsA) is a guaianolide sesquiterpene lactone that inhibits hepatitis and liver fibrosis. We evaluated the effects of HsA on liver X receptor (LXR)-mediated hepatic lipogenesis in vitro and in vivo. Up to 10 μM, HsA did not affect the viability of HepG2 and Huh7 cells. Pretreatment with 5-10 μM HsA significantly decreased the luciferase activity of the LXR response element, which was transactivated by T0901317, GW 3965, and LXRα/retinoid X receptor α overexpression. In addition, it significantly inhibited the mRNA expression of LXRα in HepG2 and Huh7 cells. It also suppressed the expression of sterol regulatory element-binding protein-1c and lipogenic genes and reduced the triglyceride accumulation triggered by T0901317. Intraperitoneal injection of HsA (5 and 10 mg/kg) in mice significantly alleviated the T0901317-mediated increases in hepatocyte diameter and the percentage of regions in hepatic parenchyma occupied by lipid droplets. Furthermore, HsA significantly attenuated hepatic triglyceride accumulation by restoring the impaired expression of LXRα-dependent lipogenic genes caused by T0901317. Therefore, based on its inhibition of the LXRα-dependent signaling pathway, HsA has prophylactic potential for steatosis.

Study of hepatoprotective effect of Haegan-jeon through activation of nuclear factor erythroid 2-related factor 2 and optimization of herbal composition based on molecular mechanism (Nuclear factor erythroid 2-related factor 2 활성화를 통한 해간전(解肝煎)의 간세포 보호 효능 및 분자기전을 활용한 해간전(解肝煎) 구성 약물의 최적화 연구)

  • Kim, Jae Kwang;Jung, Ji Yun;Park, Sang Mi;Park, Chung A;Ku, Sae Kwang;Byun, Sung Hui;Cho, Il Je;Kim, Sang Chan
    • Herbal Formula Science
    • /
    • v.26 no.3
    • /
    • pp.207-221
    • /
    • 2018
  • Objectives : Present study investigated hepatoprotective effect of Haegan-jeon extract (HE) and tried to elucidate molecular mechanism involved. According to molecular mechanism, present study optimized herbal composition of HE (op-HE) and compared in vitro and in vivo hepatoprotective effects of op-HE to HE. Methods : For in vitro experiments, HepG2 cells were exposed to arachidonic acid (AA, $10{\mu}M$) and iron ($5{\mu}M$) for inducing oxidative stress. Cell viability, GSH contents, $H_2O_2$ production, mitochondrial membrane potential, immunoblot and reporter gene assay were performed to investigate cytoprotective effects and responsible molecular mechanisms. For in vivo experiments, hepatoprotective effect of HE and op-HE were assessed on $CCl_4-induced$ liver injury mice model. Results : HE pretreatment prevented AA+iron-mediated hepatocytes apoptosis. In addition, AA+iron-induced mitochondrial dysfunction, $H_2O_2$ production, glutathione depletion were reduced by HE pretreatment. In addition, nuclear factor erythroid 2-related factor 2 (Nrf2) phosphorylation, antioxidant response element (ARE)-driven reporter gene activity, and antioxidant genes expression were increased by HE. Based on reporter gene and MTT assays, we found that op-HE consisting three medicinal herbs also significantly increased transactivation of Nrf2 and reduced the AA+iron-mediated cytotoxicity. Moreover, in $CCl_4-induced$ liver injury mice model, HE-op had an ability to ameliorate $CCl_4-mediated$ increases in serum alanine transferase and aspartate aminotransferase activity, hepatic degeneration, inflammatory cell infiltration, and collagen deposition. Hepatoprotective effects of op-HE were comparable to those of HE. Conclusions : Present study suggests that op-HE as well as HE exhibit hepatoprotective effect against oxidative stress-mediated liver injury via Nrf2 activation.

Anti-cancer and -Metastatic Effects of Lactobacillus Rhamnosus GG Extract on Human Malignant Melanoma Cells, A375P and A375SM

  • Lee, Jaehoon;Park, Sangkyu;Seo, Jeongmin;Roh, Sangho
    • International Journal of Oral Biology
    • /
    • v.42 no.3
    • /
    • pp.107-115
    • /
    • 2017
  • Human malignant melanoma is an aggressive skin cancer which has been rising at a greater rate than any other cancers. Although various new therapeutic methods have been developed in previous studies, this disease has properties of high proliferation and metastasis rate which remain obstacles that have lead to a poor prognosis in patients. It has been reported that a specific Lactobacillus extract has anti-cancer and -metastasis effect in vitro and in vivo. However, previous research has not specified precisely what effect the Lactobacillus rhamnosus GG (LGG) extract has had on human malignant melanomas. In this study, we showed that the LGG extract has anti-cancer and -metastasis effects on the human malignant melanoma cell lines, A375P and A375SM. At first, it was found that, while the LGG extract affects human neonatal dermal fibroblasts slightly, it induced the dose-dependent anti-cancer effect on A375P and A375SM by a WST-1 proliferation assay. As a result of a real-time PCR analysis, the expression patterns of several genes related to cell cycle, proliferation, and apoptosis were modulating in a manner that inhibited the growth of both malignant melanoma cell lines after the treatment of the LGG extract. Furthermore, genes related to the epithelial-mesenchymal transition were down-regulated, and migration rates were also decreased significantly by the LGG extract. Our study showed that the LGG extract could be used as a potential therapeutic source.

Synthesis and Biological Evaluation of Novel IM3829 (4-(2-Cyclohexylethoxy)aniline) Derivatives as Potent Radiosensitizers

  • Ahn, Jiyeon;Nam, Ky-Youb;Lee, Sae-Lo-Oom;Ryu, Hwani;Choi, Hyun Kyung;Song, Jie-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3623-3626
    • /
    • 2014
  • Nuclear factor-erythroid 2-related factor 2 (Nrf2) regulates the expression of over 200 genes of antioxidant and phase II drug-metabolizing enzymes, and is highly expressed in non-small cell lung cancer (NSCLC). Nine derivatives of 4-(2-cyclohexylethoxy)aniline were designed. Our previous study demonstrated that IM3829 increases radiosensitivity of several lung cancer cells in vitro and in vivo. Here, biological effects of IM3829 derivatives (2a-2i) were evaluated. Compound 2g derivative effectively inhibits mRNA and protein expression of Nrf2 and HO-1. In addition, we observed over two fold enhancement in IR-induced cell death, from $2.90{\pm}0.22$ to $6.02{\pm}0.87$, in H1299 cancer cell-line. Among the nine derivatives, compound 2g derivative exhibited the highest enhancement of radiosensitizing effect via inhibition of Nrf2 activity.

Signal Transduction Events Elicited by Natural Products: Role of MAPK and Caspase Pathways in Homeostatic Response and Induction of Apoptosis

  • Kong, Ah-Ng Tony;Yu, Rong;Chen, Chi;Mandlekar, Sandhya;Primiano, Thomas
    • Archives of Pharmacal Research
    • /
    • v.23 no.1
    • /
    • pp.1-16
    • /
    • 2000
  • Many natural products elicit diverse pharmacological effects. Using two classes of potential chemopreventive compounds, the phenolic compounds and the isothiocyanates, we review the potential utility of two signaling events, the mitogen-activated protein kinases (MAPKs) and the ICE/Ced-3 proteases (caspases) stimulated by these agents in mammalian cell lines. Studies with phenolic antioxidants (BHA, tBHQ), and natural products (flavonoids; EGCG, ECG, and isothiocyanates; PEITC, sulforaphane), provided important insights into the signaling pathways induced by these compounds. At low concentrations, these chemicals may activate the MAPK (ERK2, JNK1, p38) leading to gene expression of survival genes (c-Fos, c-Jun) and defensive genes (Phase II detoxifying enzymes; GST, QR) resulting in survival and protective mechanisms (homeostasis response). Increasing the concentrations of these compounds will additionally activate the caspase pathway, leading to apoptosis (potential cytotoxicity). Further increment to suprapharmacological concentrations will lead to nonspecific necrotic cell death. The wider and narrow concentration ranges between the activation of MAPK/gene induction and caspases/cell death exhibited by phenolic compounds and isothiocyanates, respectively, in mammalian cells, may reflect their respective therapeutic windows in vivo. Consequently, the studies of signaling pathways elicited by natural products will advance our understanding of their efficacy and safety, of which many man become important therapeuitc drugs of the future.

  • PDF

CDDO-Me alleviates oxidative stress in human mesenchymal stem cells

  • Cho, Hye Jin;Kim, Tae Min
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.36 no.4
    • /
    • pp.285-291
    • /
    • 2021
  • Mesenchymal stem cells (MSCs) have been recognized as a therapeutic tool for various diseases due to its unique ability for tissue regeneration and immune regulation. However, poor survival during in vitro expansion and after being administrated in vivo limits its clinical uses. Accordingly, protocols for enhancing cell survivability is critical for establishing an efficient cell therapy is needed. CDDO-Me is a synthetic C-28 methyl ester of 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid, which is known to stimulate nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway. Herein, report that CDDO-Me promoted the proliferation of MSCs and increased colony forming units (CFU) numbers. No alteration in differentiation into tri-lineage mesodermal cells was found after CDDO-Me treatment. We observed that CDDO-Me treatment reduced the cell death induced by oxidative stress, demonstrated by the augment in the expression of Nrf2-downstream genes. Lastly, CDDO-Me led to the nuclear translocation of NRF2. Our data indicate that CDDO-Me can enhance the functionality of MSCs by stimulating cell survival and increasing viability under oxidative stress.

Construction of a CRISPR/Cas9-Mediated Genome Editing System in Lentinula edodes

  • Moon, Suyun;An, Jee Young;Choi, Yeon-Jae;Oh, Youn-Lee;Ro, Hyeon-Su;Ryu, Hojin
    • Mycobiology
    • /
    • v.49 no.6
    • /
    • pp.599-603
    • /
    • 2021
  • CRISPR/Cas9 genome editing systems have been established in a broad range of eukaryotic species. Herein, we report the first method for genetic engineering in pyogo (shiitake) mushrooms (Lentinula edodes) using CRISPR/Cas9. For in vivo expression of guide RNAs (gRNAs) targeting the mating-type gene HD1 (LeA1), we identified an endogenous LeU6 promoter in the L. edodes genome. We constructed a plasmid containing the LeU6 and glyceraldehyde-3-phosphate dehydrogenase (LeGPD) promoters to express the Cas9 protein. Among the eight gRNAs we tested, three successfully disrupted the LeA1 locus. Although the CRISPR-Cas9-induced alleles did not affect mating with compatible monokaryotic strains, disruption of the transcription levels of the downstream genes of LeHD1 and LeHD2 was detected. Based on this result, we present the first report of a simple and powerful genetic manipulation tool using the CRISPR/Cas9 toolbox for the scientifically and industrially important edible mushroom, L. edodes.

Improving the Safety of Mesenchymal Stem Cell-Based Ex Vivo Therapy Using Herpes Simplex Virus Thymidine Kinase

  • Bashyal, Narayan;Lee, Tae-Young;Chang, Da-Young;Jung, Jin-Hwa;Kim, Min Gyeong;Acharya, Rakshya;Kim, Sung-Soo;Oh, Il-Hoan;Suh-Kim, Haeyoung
    • Molecules and Cells
    • /
    • v.45 no.7
    • /
    • pp.479-494
    • /
    • 2022
  • Human mesenchymal stem cells (MSCs) are multipotent stem cells that have been intensively studied as therapeutic tools for a variety of disorders. To enhance the efficacy of MSCs, therapeutic genes are introduced using retroviral and lentiviral vectors. However, serious adverse events (SAEs) such as tumorigenesis can be induced by insertional mutagenesis. We generated lentiviral vectors encoding the wild-type herpes simplex virus thymidine kinase (HSV-TK) gene and a gene containing a point mutation that results in an alanine to histidine substitution at residue 168 (TK(A168H)) and transduced expression in MSCs (MSC-TK and MSC-TK(A168H)). Transduction of lentiviral vectors encoding the TK(A168H) mutant did not alter the proliferation capacity, mesodermal differentiation potential, or surface antigenicity of MSCs. The MSC-TK(A168H) cells were genetically stable, as shown by karyotyping. MSC-TK(A168H) responded to ganciclovir (GCV) with an half maximal inhibitory concentration (IC50) value 10-fold less than that of MSC-TK. Because MSC-TK(A168H) cells were found to be non-tumorigenic, a U87-TK(A168H) subcutaneous tumor was used as a SAE-like condition and we evaluated the effect of valganciclovir (vGCV), an oral prodrug for GCV. U87-TK(A168H) tumors were more efficiently ablated by 200 mg/kg vGCV than U87-TK tumors. These results indicate that MSC-TK(A168H) cells appear to be pre-clinically safe for therapeutic use. We propose that genetic modification with HSV-TK(A168H) makes allogeneic MSC-based ex vivo therapy safer by eliminating transplanted cells during SAEs such as uncontrolled cell proliferation.

The Effect of the Compound of Tomato Extract to the Prostatic Cancer Cell and the Prostate of the Rat Model of Benign Prostatic Hyperplasia (토마토 추출액 복합체가 전립선 암 세포와 전립선 비대증에 미치는 영향)

  • Kang, Han-Saem;Kim, Gwang-Yun;Jung, Il;Oh, Sung-Dug;Kim, Chang-Hoon;Shim, Bong-Sup;Park, Keun-Hyung;Oh, Suk-Jung
    • Korean Journal of Pharmacognosy
    • /
    • v.38 no.2 s.149
    • /
    • pp.197-203
    • /
    • 2007
  • Benign prostatic hyperplasia (BPH) is one of the common disease in elderly men. Recently old-age population is increased and we are growing more and more interested in clinical importance of BPH. In this study, the effect of PLX, which was the mixture of tomato extract (including 2% of lycopene) and chitooligosaccharide, on prostatic cancer cell and testosterone-induced BPH in adult rats of the Sprague Dawley strain was determined. The cell viability was evaluated by MTT method using L929 and LNCaP cell line, pretreated with various concentrations of PLX. The expression of prostatic specific antigen (PSA) and 5${\alpha$}$-reductase genes were evaluated by realtime PCR using LNCaP cell line and compared various concentrations of PLX with 50 ${\mu}$M of finasteride. An experimental prostatic hyperplasia was induced in male Sprague Dawley rats by giving testosterone for 8 weeks. After 2 weeks from start of giving testosterone, PLX and finasteride were administered orally once a day. The results were analyzed with prostate weight per body weight at 8 weeks. Cell viability of L929 cell line decreased specifically at the concentration of 2000 ${\mu}$g/mf of PLX. The cytotoxicity of PLX to the LNCaP cell line was shown at above 500 ${\mu}$g/ml of PLX. The inhibitory effect of PLX to the expression of PSA and 5${\alpha$}$-reductase genes in LNCaP cell line increased with the concentration of PLX. In vivo study, the results of PLX and finasteride administered group were 3.75${\pm}$0.60 and 3.49${\pm}$0.49 prostate weight ${\times}10^3$/body weight, which were lower than the result of BPH induced group (4.74${\pm}$0.58). These results suggested that PLX may be an effective material in BPH by having the role of the 5a-reductase inhibitor.