Browse > Article
http://dx.doi.org/10.4014/jmb.1112.12057

Improved Production of Long-Chain Fatty Acid in Escherichia coli by an Engineering Elongation Cycle During Fatty Acid Synthesis (FAS) Through Genetic Manipulation  

Jeon, Eunyoung (Department of Chemical and Biomolecular Engineering, Sogang University)
Lee, Sunhee (Department of Chemical and Biomolecular Engineering, Sogang University)
Lee, Seunghan (Department of Chemical and Biomolecular Engineering, Sogang University)
Han, Sung Ok (School of Life Science and Biotechnology, Korea University)
Yoon, Yeo Joon (Department of Chemistry and Nano Science, Ewha Womans University)
Lee, Jinwon (Department of Chemical and Biomolecular Engineering, Sogang University)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.7, 2012 , pp. 990-999 More about this Journal
Abstract
The microbial biosynthesis of fatty acid of lipid metabolism, which can be used as precursors for the production of fuels of chemicals from renewable carbon sources, has attracted significant attention in recent years. The regulation of fatty acid biosynthesis pathways has been mainly studied in a model prokaryote, Escherichia coli. During the recent period, global regulation of fatty acid metabolic pathways has been demonstrated in another model prokaryote, Bacillus subtilis, as well as in Streptococcus pneumonia. The goal of this study was to increase the production of long-chain fatty acids by developing recombinant E. coli strains that were improved by an elongation cycle of fatty acid synthesis (FAS). The fabB, fabG, fabZ, and fabI genes, all homologous of E. coli, were induced to improve the enzymatic activities for the purpose of overexpressing components of the elongation cycle in the FAS pathway through metabolic engineering. The ${\beta}$-oxoacyl-ACP synthase enzyme catalyzed the addition of acyl-ACP to malonyl-ACP to generate ${\beta}$-oxoacyl-ACP. The enzyme encoded by the fabG gene converted ${\beta}$-oxoacyl-ACP to ${\beta}$-hydroxyacyl-ACP, the fabZ catalyzed the dehydration of ${\beta}$-3-hydroxyacyl-ACP to trans-2-acyl-ACP, and the fabI gene converted trans-2-acyl-ACP to acyl-ACP for long-chain fatty acids. In vivo productivity of total lipids and fatty acids was analyzed to confirm the changes and effects of the inserted genes in E. coli. As a result, lipid was increased 2.16-fold higher and hexadecanoic acid was produced 2.77-fold higher in E. coli JES1030, one of the developed recombinants through this study, than those from the wild-type E. coli.
Keywords
E. coli MG1655; fatty acid biosynthesis; longchain fatty acid; elongation cycle; acyl-carrier protein;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Atsumi, S., T. Hanai, and J. C. Liao. 2008. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature Lett. 451: 86-89.   DOI   ScienceOn
2 Atsumi, S., T. Wu, E. Eckl, S. D. Hawkins, T. Buelter, and J. C. Liao. 2010. Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/ alcohol dehydrogenase genes. Appl. Microbiol. Biotechnol. 85: 651-657.   DOI   ScienceOn
3 Bligh, E. G. and W. J. Dyer. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911-917.   DOI   ScienceOn
4 Campbell, J. W. and J. E. Cronan Jr. 2001. Bacterial fatty acid biosynthesis: Targets for antibacterial drug discovery. Annu. Rev. Microbiol. 55: 305-332.   DOI   ScienceOn
5 Davis, M. S. and J. E. Cronan Jr. 2001. Inhibition of Escherichia coli acetyl coenzyme A carboxylase by acyl-acyl carrier protein. J. Bacteriol. 183: 1499-1503.   DOI   ScienceOn
6 David, I. C. and J. V. Hans. 2010. Current understanding of fatty acid biosynthesis and the acyl carrier protein. Biochem. J. 430: 1-19.   DOI   ScienceOn
7 David, I., D. Chan, T. Peter, and J. V. Hans. 2010. Molecular dynamics simulations of ${\beta}$-ketoacyl-, ${\beta}$-hydroxyacyl-, and trans-2-enoyl-acyl carrier proteins of Escherichia coli. Biochemistry 49: 2860-2868.   DOI   ScienceOn
8 De Lay, N. R. and J. E. Cronan Jr. 2007. In vivo functional analyses of the type II acyl carrier proteins of fatty acid biosynthesis. J. Biol. Chem. 282: 20319-20328.   DOI   ScienceOn
9 Heath, R. J. and C. O. Rock. 1995. Regulation of malonyl-CoA metabolism by acyl-acyl carrier protein and ${\beta}$-ketoacyl-acyl carrier protein synthases in Escherichia coli. J. Biol. Chem. 270: 15531-15538.   DOI   ScienceOn
10 Heath, R. J. and C. O. Rock. 1996. Inhibition of ${\beta}$-ketoacyl-acyl carrier protein synthase III (FabH) by acyl-acyl carrier protein in Escherichia coli. J. Biol. Chem. 271: 10996-11000.   DOI   ScienceOn
11 Heath, R. J. and C. O. Rock. 1996. Regulation of fatty acid elongation and initiation by acyl-acyl carrier protein in Escherichia coli. J. Biol. Chem. 271: 1833-1836.   DOI
12 Helmut, B., F. Sandra, H. Gregor, and T. Friederike. 1996. The enoyl-[acyl-carrier-protein] reductase (FabI) of Escherichia coli, which catalyzes a key regulatory step in fatty acid biosynthesis, accepts NADH and NADPH as cofactors and is inhibited by palmitoyl-CoA. Eur. J. Biochem. 242: 689-694.   DOI   ScienceOn
13 Jeon, E. Y., S. H. Lee, J. I. Won, S. O. Han, J. H. Kim, and J. W. Lee. 2011. Development of Escherichia coli MG1655 strains to produce long chain fatty acids by engineering fatty acid synthesis (FAS) metabolism. EMT 49: 44-51.
14 Kalscheuer, R., T. Stolting, and A. Steinbuchel. 2006. Microdiesel: Escherichia coli engineered for fuel production. Microbiology 152: 2529-2536.   DOI   ScienceOn
15 Lai, C. Y. and J. E. Cronan. 2004. Isolation and characterization of ${\beta}$-ketoacyl-acyl carrier protein reductase (fabG) mutants of Escherichia coli and Salmonella enterica serovar Typhimurium. J. Bacteriol. 186: 1869-1878.   DOI   ScienceOn
16 Lei, Z., C. Juanli, L. Biao, F. Saixiang, L. Jinshui, W. Shengbin, et al. 2009. Functions of the Clostridium acetobutylicium FabF and FabZ proteins in unsaturated fatty acid biosynthesis. BMC Microbiol. 9: 119.   DOI   ScienceOn
17 Magnuson, K., S. Jackowski, C. O. Rock, and J. E. Cronan Jr. 1993. Regulation of fatty acid biosynthesis in Escherichia coli. Microbiol. Mol. Biol. Rev. 57: 522-542.
18 Liu, T., H. Vora, and C. Khosla. 2010. Quantitative analysis and engineering of fatty acid biosynthesis in E. coli. Metab. Eng. 12: 378-386.   DOI   ScienceOn
19 Marrakchi, H., Y. M. Zhang, and C. O. Rock. 2002. Mechanistic diversity and regulation of Type II fatty acid synthesis. Biochem. Soc. Trans. 30: 1050-1055.
20 Merriann, R. and E. C. John Jr. 1992. The gene encoding Escherichia coli acyl carrier protein lies within a cluster of fatty acid biosynthetic genes. J. Biol. Chem. 267: 5751-5754.
21 Natalya, S. and A. R. Kevin. 2001. Engineered fatty acid biosynthesis in Streptomyces by altered catalytic function of ${\beta}$- ketoacyl-acyl carrier protein synthase III. J. Bacteriol. 183: 2335-2342.   DOI   ScienceOn
22 von Wettstein-Knowles, P., J. G. Olsen, K. A. McGuire, and A. Henriksen. 2006. Fatty acid synthesis: Role of active site histidines and lysine in Cys-His-His-type ${\beta}$-ketoacyl-acyl carrier protein synthases. J. FEBS 273: 695-710.   DOI   ScienceOn
23 Heath, R. J. and C. O. Rock. 1995. Regulation of malonyl-coA Metabolism by acyl-acyl carrier protein and ${\beta}$-ketoacyl-acyl carrier protein synthases in Escherichia coli. J. Biol. Chem. 270: 15531-15538.   DOI   ScienceOn
24 Heath, R. J. and C. O. Rock. 1996. Roles of the FabA and FabZ ${\beta}$-hydroxyacyl-acyl carrier protein dehydratases in Escherichia coli fatty acid biosynthesis. J. Biol. Chem. 271: 27795-27801.   DOI   ScienceOn
25 Heath, R. J., N. Su, C. K. Murphy, and C. O. Rock. 2000. The enoyl-[acyl-carrier-protein] reductases FabI and FabL from Bacillus subtilis. J. Biol. Chem. 275: 40128-40133.   DOI   ScienceOn
26 Shiba, Y., E. M. Paradise, J. Kirby, D. K. Ro, and J. D. Keasling. 2007. Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metab. Eng. 9: 160-168.   DOI   ScienceOn
27 Sambrook, J. and D. Russell. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, New York.
28 Mohan, S., T. M. Kelly, S. S. Eveland, C. R. Raetz, and M. S. Anderson. 1994. An Escherichia coli gene (FabZ) encoding (3R)-hydroxymyristoyl acyl carrier protein dehydrase. J. Biol. Chem. 269: 32896-32903.
29 Schweizer, E. and J. Hofmann. 2004. Microbial type I fatty acid synthases (FAS): Major players in a network of cellular FAS systems. Microbiol. Mol. Biol. Rev. 68: 501-517.   DOI   ScienceOn
30 Smirnova, N. and K. A. Reynolds. 2001. Branched-chain fatty acid biosynthesis in Escherichia coli. J. Ind. Microbiol. Biotechnol. 27: 246-251.   DOI   ScienceOn
31 Subrahmanyam, S. and J. E. Cronan Jr. 1998. Overproduction of a functional fatty acid biosynthetic enzyme blocks fatty acid synthesis in Escherichia coli. J. Bacteriol. 180: 4596-4602.
32 Jackowski, S. and C. O. Rock. 1987. Acetoacetyl-acyl carrier protein synthase, a potential regulator of fatty acid biosynthesis in bacteria. J. Biol. Chem. 262: 7927-7931.
33 Hoang, T. T., S. A. Sullivan, J. K. Cusick, and H. P. Schweizer. 2002. ${\beta}$-Ketoacyl acyl carrier protein reductase (FabG) activity of the fatty acid biosynthetic pathway is a determining factor of 3-oxo-homoserine lactone acyl chain lengths. Microbiology 148: 3849-3856.
34 Wang, C., S. H. Yoon, A. A. Shah, Y. R. Chung, J. Y. Kim, E. S. Choi, et al. 2010. Farnesol production from Escherichia coli by harnessing the exogenous mevalonate pathway. Biotechnol. Bioeng. 107: 421-429.   DOI   ScienceOn
35 Yoon, S. H., S. H. Lee, A. Das, H. K. Ryu, H. J. Jang, J. Y. Kim, et al. 2009. Combinatorial expression of bacterial whole mevalonate pathway for the production of ${\beta}$-carotene in E. coli. J. Biotechnol. 140: 218-226.   DOI   ScienceOn
36 Wang, H. and J. E. Cronan. 2004. Functional replacement of the FabA and FabB proteins of Escherichia coli fatty acid synthesis by Enterococcus faecalis FabZ and FabF homologues. J. Biol. Chem. 279: 34489-34495.   DOI   ScienceOn
37 Yan, Z. and J. E. Cronan Jr. 1998. Transcriptional analysis of essential genes of the Escherichia coli fatty acid biosynthesis gene cluster by functional replacement with the analogous Salmonella Typhimurium gene cluster. J. Bacteriol. 180: 3295-3303.
38 Yomano, L. P., S. W. York, S. Zhou, K. T. Shanmugam, and L. O. Ingram. 2001. Re-engineering Escherichia coli for ethanol production. Biotechnol. Lett. 30: 2097-2103.
39 Zha, W., S. B. Rubin-Pitel, Z. Shao, and H. Zhao. 2009. Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering. Metab. Eng. 11: 192-198.   DOI   ScienceOn