Browse > Article
http://dx.doi.org/10.14348/molcells.2022.5015

Improving the Safety of Mesenchymal Stem Cell-Based Ex Vivo Therapy Using Herpes Simplex Virus Thymidine Kinase  

Bashyal, Narayan (Department of Anatomy, Ajou University School of Medicine)
Lee, Tae-Young (Research Center, Cell&Brain Co., Ltd.)
Chang, Da-Young (Research Center, Cell&Brain Co., Ltd.)
Jung, Jin-Hwa (Department of Anatomy, Ajou University School of Medicine)
Kim, Min Gyeong (Department of Anatomy, Ajou University School of Medicine)
Acharya, Rakshya (Department of Anatomy, Ajou University School of Medicine)
Kim, Sung-Soo (Department of Anatomy, Ajou University School of Medicine)
Oh, Il-Hoan (Department of Medical Lifescience, The Catholic University of Korea, College of Medicine)
Suh-Kim, Haeyoung (Department of Anatomy, Ajou University School of Medicine)
Abstract
Human mesenchymal stem cells (MSCs) are multipotent stem cells that have been intensively studied as therapeutic tools for a variety of disorders. To enhance the efficacy of MSCs, therapeutic genes are introduced using retroviral and lentiviral vectors. However, serious adverse events (SAEs) such as tumorigenesis can be induced by insertional mutagenesis. We generated lentiviral vectors encoding the wild-type herpes simplex virus thymidine kinase (HSV-TK) gene and a gene containing a point mutation that results in an alanine to histidine substitution at residue 168 (TK(A168H)) and transduced expression in MSCs (MSC-TK and MSC-TK(A168H)). Transduction of lentiviral vectors encoding the TK(A168H) mutant did not alter the proliferation capacity, mesodermal differentiation potential, or surface antigenicity of MSCs. The MSC-TK(A168H) cells were genetically stable, as shown by karyotyping. MSC-TK(A168H) responded to ganciclovir (GCV) with an half maximal inhibitory concentration (IC50) value 10-fold less than that of MSC-TK. Because MSC-TK(A168H) cells were found to be non-tumorigenic, a U87-TK(A168H) subcutaneous tumor was used as a SAE-like condition and we evaluated the effect of valganciclovir (vGCV), an oral prodrug for GCV. U87-TK(A168H) tumors were more efficiently ablated by 200 mg/kg vGCV than U87-TK tumors. These results indicate that MSC-TK(A168H) cells appear to be pre-clinically safe for therapeutic use. We propose that genetic modification with HSV-TK(A168H) makes allogeneic MSC-based ex vivo therapy safer by eliminating transplanted cells during SAEs such as uncontrolled cell proliferation.
Keywords
herpes simplex virus-thymidine kinase; lentiviral vector; mesenchymal stem cells; safety switch; stemness;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Lee, T.Y., Cho, I.S., Bashyal, N., Naya, F.J., Tsai, M.J., Yoon, J.S., Choi, J.M., Park, C.H., Kim, S.S., and Suh-Kim, H. (2020). ERK regulates NeuroD1-mediated neurite outgrowth via proteasomal degradation. Exp. Neurobiol. 29, 189-206.   DOI
2 Szaraz, P., Gratch, Y.S., Iqbal, F., and Librach, C.L. (2017). In vitro differentiation of human mesenchymal stem cells into functional cardiomyocyte-like cells. J. Vis. Exp. (126), 55757.
3 Tani, K. (2016). Current status of ex vivo gene therapy for hematological disorders: a review of clinical trials in Japan around the world. Int. J. Hematol. 104, 42-72.   DOI
4 Zhang, Y., Huang, X., and Yuan, Y. (2017). MicroRNA-410 promotes chondrogenic differentiation of human bone marrow mesenchymal stem cells through down-regulating Wnt3a. Am. J. Transl. Res. 9, 136-145.
5 Kim, S.S., Kim, B.J., and Suh-Kim, H. (2003). The efficient gene delivery into human mesenchymal stem cells using retroviral vectors. Korean J. Anat. 36, 381-387.
6 Le Blanc, K., Tammik, C., Rosendahl, K., Zetterberg, E., and Ringden, O. (2003). HLA expression and immunologic propertiesof differentiated and undifferentiated mesenchymal stem cells. Exp. Hematol. 31, 890-896.   DOI
7 Tomayko, M.M. and Reynolds, C.P. (1989). Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother. Pharmacol. 24, 148-154.   DOI
8 Zhang, Z., Lin, J., Chu, J., Ma, Y., Zeng, S., and Luo, Q. (2008). Activation of caspase-3 noninvolved in the bystander effect of the herpes simplex virus thymidine kinase gene/ganciclovir (HSV-tk/GCV) system. J. Biomed. Opt. 13, 031209.   DOI
9 Shin, J.W., Ryu, S., Ham, J., Jung, K., Lee, S., Chung, D.H., Kang, H.R., and Kim, H.Y. (2021). Mesenchymal stem cells suppress severe asthma by directly regulating Th2 cells and type 2 innate lymphoid cells. Mol. Cells 44, 580-590.   DOI
10 Suzuki, M., McHugh, J., Tork, C., Shelley, B., Hayes, A., Bellantuono, I., Aebischer, P., and Svendsen, C.N. (2008). Direct muscle delivery of GDNF with human mesenchymal stem cells improves motor neuron survival and function in a rat model of familial ALS. Mol. Ther. 16, 2002-2010.   DOI
11 Sgodda, M., Aurich, H., Kleist, S., Aurich, I., Konig, S., Dollinger, M.M., Fleig, W.E., and Christ, B. (2007). Hepatocyte differentiation of mesenchymal stem cells from rat peritoneal adipose tissue in vitro and in vivo. Exp. Cell Res. 313, 2875-2886.   DOI
12 Chang, D.Y., Jung, J.H., Kim, A.A., Marasini, S., Lee, Y.J., Paek, S.H., Kim, S.S., and Suh-Kim, H. (2020). Combined effects of mesenchymal stem cells carrying cytosine deaminase gene with 5-fluorocytosine and temozolomide in orthotopic glioma model. Am. J. Cancer Res. 10, 1429-1441.
13 Mesnil, M. and Yamasaki, H. (2000). Bystander effect in herpes simplex virus-thymidine kinase/ganciclovir cancer gene therapy: role of gapjunctional intercellular communication. Cancer Res. 60, 3989-3999.
14 Wang, M., Munoz, J., Goy, A., Locke, F.L., Jacobson, C.A., Hill, B.T., Timmerman, J.M., Holmes, H., Jaglowski, S., Flinn, I.W., et al. (2020). KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. N. Engl. J. Med. 382, 1331-1342.   DOI
15 Chang, D.Y., Yoo, S.W., Hong, Y., Kim, S., Kim, S.J., Yoon, S.H., Cho, K.G., Paek, S.H., Lee, Y.D., Kim, S.S., et al. (2010). The growth of brain tumors can be suppressed by multiple transplantation of mesenchymal stem cells expressing cytosine deaminase. Int. J. Cancer 127, 1975-1983.   DOI
16 Fitzgerald, J.C., Weiss, S.L., Maude, S.L., Barrett, D.M., Lacey, S.F., Melenhorst, J.J., Shaw, P., Berg, R.A., June, C.H., Porter, D.L., et al. (2017). Cytokine release syndrome after chimeric antigen receptor T cell therapy for acute lymphoblastic leukemia. Crit. Care Med. 45, e124-e131.
17 Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S., and Marshak, D.R. (1999). Multilineage potential of adult human mesenchymal stem cells. Science 284, 143-147.   DOI
18 Reardon, J.E. (1989). Herpes simplex virus type 1 and human DNA polymerase interactions with 2'-deoxyguanosine 5'-triphosphate analogues. Kinetics of incorporation into DNA and induction of inhibition. J. Biol. Chem. 264, 19039-19044.   DOI
19 Black, M.E., Newcomb, T.G., Wilson, H.M., and Loeb, L.A. (1996). Creation of drug-specific herpes simplex virus type 1 thymidine kinase mutants for gene therapy. Proc. Natl. Acad. Sci. U. S. A. 93, 3525-3529.   DOI
20 Cartier, N., Hacein-Bey-Abina, S., Bartholomae, C.C., Veres, G., Schmidt, M., Kutschera, I., Vidaud, M., Abel, U., Dal-Cortivo, L., Caccavelli, L., et al. (2009). Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 326, 818-823.   DOI
21 De Ravin, S.S., Wu, X., Moir, S., Anaya-O'Brien, S., Kwatemaa, N., Littel, P., Theobald, N., Choi, U., Su, L., Marquesen, M., et al. (2016). Lentiviral hematopoietic stem cell gene therapy for X-linked severe combined immunodeficiency. Sci. Transl. Med. 8, 335ra357.
22 Hetzel, M., Suzuki, T., Hashtchin, A.R., Arumugam, P., Carey, B., Schwabbauer, M., Kuhn, A., Meyer, J., Schambach, A., Van Der Loo, J., et al. (2017). Function and safety of lentivirus-mediated gene transfer for CSF2RA-deficiency. Hum. Gene Ther. Methods 28, 318-329.   DOI
23 Dilger, N., Neehus, A.L., Grieger, K., Hoffmann, A., Menssen, M., and Ngezahayo, A. (2020). Gap junction dependent cell communication is modulated during transdifferentiation of mesenchymal stem/stromal cells towards neuron-like cells. Front. Cell Dev. Biol. 8, 869.   DOI
24 Field, A.K., Davies, M.E., DeWitt, C., Perry, H.C., Liou, R., Germershausen, J., Karkas, J.D., Ashton, W.T., Johnston, D.B., and Tolman, R.L. (1983). 9-([2-hydroxy-1-(hydroxymethyl)ethoxy]methyl)guanine: a selective inhibitor of herpes group virus replication. Proc. Natl. Acad. Sci. U. S. A. 80, 4139-4143.   DOI
25 Hacein-Bey-Abina, S., Le Deist, F., Carlier, F., Bouneaud, C., Hue, C., De Villartay, J.P., Thrasher, A.J., Wulffraat, N., Sorensen, R., Dupuis-Girod, S., et al. (2002). Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N. Engl. J. Med. 346, 1185-1193.   DOI
26 Huang, P., Wang, L., Li, Q., Xu, J., Xu, J., Xiong, Y., Chen, G., Qian, H., Jin, C., Yu, Y., et al. (2019). Combinatorial treatment of acute myocardial infarction using stem cells and their derived exosomes resulted in improved heart performance. Stem Cell Res. Ther. 10, 300.   DOI
27 Kan, I., Ben-Zur, T., Barhum, Y., Levy, Y.S., Burstein, A., Charlow, T., Bulvik, S., Melamed, E., and Offen, D. (2007). Dopaminergic differentiation of human mesenchymal stem cells--utilization of bioassay for tyrosine hydroxylase expression. Neurosci. Lett. 419, 28-33.   DOI
28 Le Blanc, K., Rasmusson, I., Sundberg, B., Gotherstrom, C., Hassan, M., Uzunel, M., and Ringden, O. (2004). Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363, 1439-1441.   DOI
29 Kim, S.S., Choi, J.M., Kim, J.W., Ham, D.S., Ghil, S.H., Kim, M.K., Kim-Kwon, Y., Hong, S.Y., Ahn, S.C., Kim, S.U., et al. (2005). cAMP induces neuronal differentiation of mesenchymal stem cells via activation of extracellular signal-regulated kinase/MAPK. Neuroreport 16, 1357-1361.   DOI
30 Kim, S.S., Yoo, S.W., Park, T.S., Ahn, S.C., Jeong, H.S., Kim, J.W., Chang, D.Y., Cho, K.G., Kim, S.U., Huh, Y., et al. (2008). Neural induction with neurogenin1 increases the therapeutic effects of mesenchymal stem cells in the ischemic brain. Stem Cells 26, 2217-2228.   DOI
31 Hacein-Bey-Abina, S., Pai, S.Y., Gaspar, H.B., Armant, M., Berry, C.C., Blanche, S., Bleesing, J., Blondeau, J., de Boer, H., Buckland, K.F., et al. (2014). A modified γ-retrovirus vector for X-linked severe combined immunodeficiency. N. Engl. J. Med. 371, 1407-1417.   DOI
32 McGarrity, G.J., Hoyah, G., Winemiller, A., Andre, K., Stein, D., Blick, G., Greenberg, R.N., Kinder, C., Zolopa, A., Binder-Scholl, G., et al. (2013). Patient monitoring and follow-up in lentiviral clinical trials. J. Gene Med. 15, 78-82.   DOI
33 Balzarini, J., Liekens, S., Solaroli, N., El Omari, K., Stammers, D.K., and Karlsson, A. (2006). Engineering of a single conserved amino acid residue of herpes simplex virus type 1 thymidine kinase allows a predominant shift from pyrimidine to purine nucleoside phosphorylation. J. Biol. Chem. 281, 19273-19279.   DOI
34 Lee, S.H., Jin, K.S., Bang, O.Y., Kim, B.J., Park, S.J., Lee, N.H., Yoo, K.H., Koo, H.H., and Sung, K.W. (2015). Differential migration of mesenchymal stem cells to ischemic regions after middle cerebral artery occlusion in rats. PLoS One 10, e0134920.   DOI
35 Lin, P., Lin, Y., Lennon, D.P., Correa, D., Schluchter, M., and Caplan, A.I. (2012). Efficient lentiviral transduction of human mesenchymal stem cells that preserves proliferation and differentiation capabilities. Stem Cells Transl. Med. 1, 886-897.   DOI
36 Locke, F.L., Ghobadi, A., Jacobson, C.A., Miklos, D.B., Lekakis, L.J., Oluwole, O.O., Lin, Y., Braunschweig, I., Hill, B.T., Timmerman, J.M., et al. (2019). Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1-2 trial. Lancet Oncol. 20, 31-42.   DOI
37 Marasini, S., Chang, D.Y., Jung, J.H., Lee, S.J., Cha, H.L., Suh-Kim, H., and Kim, S.S. (2017). Effects of adenoviral gene transduction on the stemness of human bone marrow mesenchymal stem cells. Mol. Cells 40, 598-605.   DOI
38 Marsden, H.S., Haarr, L., and Preston, C.M. (1983). Processing of herpes simplex virus proteins and evidence that translation of thymidine kinase mRNA is initiated at three separate AUG codons. J. Virol. 46, 434-445.   DOI
39 Mazzini, L., Fagioli, F., Boccaletti, R., Mareschi, K., Oliveri, G., Olivieri, C., Pastore, I., Marasso, R., and Madon, E. (2003). Stem cell therapy in amyotrophic lateral sclerosis: a methodological approach in humans. Amyotroph. Lateral Scler. Other Motor Neuron Disord. 4, 158-161.   DOI
40 Naldini, L. (2011). Ex vivo gene transfer and correction for cell-based therapies. Nat. Rev. Genet. 12, 301-315.   DOI
41 al-Shawi, R., Burke, J., Wallace, H., Jones, C., Harrison, S., Buxton, D., Maley, S., Chandley, A., and Bishop, J.O. (1991). The herpes simplex virus type 1 thymidine kinase is expressed in the testes of transgenic mice under the control of a cryptic promoter. Mol. Cell. Biol. 11, 4207-4216.   DOI
42 Beltinger, C., Fulda, S., Kammertoens, T., Meyer, E., Uckert, W., and Debatin, K.M. (1999). Herpes simplex virus thymidine kinase/ganciclovir-induced apoptosis involves ligand-independent death receptor aggregation and activation of caspases. Proc. Natl. Acad. Sci. U. S. A. 96, 8699-8704.   DOI
43 Aurich, H., Sgodda, M., Kaltwasser, P., Vetter, M., Weise, A., Liehr, T., Brulport, M., Hengstler, J.G., Dollinger, M.M., Fleig, W.E., et al. (2009). Hepatocyte differentiation of mesenchymal stem cells from human adipose tissue in vitro promotes hepatic integration in vivo. Gut 58, 570-581.   DOI
44 Belizario, J.E. (2009). Immunodeficient mouse models: an overview. Open Immunol. J. 2, 79-85.   DOI
45 Unsal, I.O., Ginis, Z., Pinarli, F.A., Albayrak, A., Cakal, E., Sahin, M., and Delibasi, T. (2015). Comparison of therapeutic characteristics of islet cell transplantation simultaneous with pancreatic mesenchymal stem cell transplantation in rats with Type 1 diabetes mellitus. Stem Cell Rev. Rep. 11, 526-532.   DOI
46 Black, M.E., Kokoris, M.S., and Sabo, P. (2001). Herpes simplex virus-1 thymidine kinase mutants created by semi-random sequence mutagenesis improve prodrug-mediated tumor cell killing. Cancer Res. 61, 3022-3026.
47 Cen, S., Li, J., Cai, Z., Pan, Y., Sun, Z., Li, Z., Ye, G., Zheng, G., Li, M., Liu, W., et al. (2020). TRAF4 acts as a fate checkpoint to regulate the adipogenic differentiation of MSCs by activating PKM2. EBioMedicine 54, 102722.   DOI
48 Dos Santos, J.F., Borcari, N.R., da Silva Araujo, M., and Nunes, V.A. (2019). Mesenchymal stem cells differentiate into keratinocytes and express epidermal kallikreins: towards an in vitro model of human epidermis. J. Cell. Biochem. 120, 13141-13155.   DOI
49 Greco, R., Oliveira, G., Stanghellini, M.T., Vago, L., Bondanza, A., Peccatori, J., Cieri, N., Marktel, S., Mastaglio, S., Bordignon, C., et al. (2015). Improving the safety of cell therapy with the TK-suicide gene. Front. Pharmacol. 6, 95.   DOI
50 Valiunas, V., Doronin, S., Valiuniene, L., Potapova, I., Zuckerman, J., Walcott, B., Robinson, R.B., Rosen, M.R., Brink, P.R., and Cohen, I.S. (2004). Human mesenchymal stem cells make cardiac connexins and form functional gap junctions. J. Physiol. 555, 617-626.   DOI
51 van Dillen, I.J., Mulder, N.H., Vaalburg, W., de Vries, E.F., and Hospers, G.A. (2002). Influence of the bystander effect on HSV-tk/GCV gene therapy. A review. Curr. Gene Ther. 2, 307-322.   DOI
52 Wang, F., Yasuhara, T., Shingo, T., Kameda, M., Tajiri, N., Yuan, W.J., Kondo, A., Kadota, T., Baba, T., Tayra, J.T., et al. (2010). Intravenous administration of mesenchymal stem cells exerts therapeutic effects on parkinsonian model of rats: focusing on neuroprotective effects of stromal cell-derived factor-1alpha. BMC Neurosci. 11, 52.   DOI
53 Xin, H., Li, Y., Cui, Y., Yang, J.J., Zhang, Z.G., and Chopp, M. (2013). Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J. Cereb. Blood Flow Metab. 33, 1711-1715.   DOI
54 Yang, H., Yang, H., Xie, Z., Wei, L., and Bi, J. (2013). Systemic transplantation of human umbilical cord derived mesenchymal stem cells-educated T regulatory cells improved the impaired cognition in AβPPswe/PS1dE9 transgenic mice. PLoS One 8, e69129.   DOI
55 Zhang, X., Chen, J., Liu, A., Xu, X., Xue, M., Xu, J., Yang, Y., Qiu, H., and Guo, F. (2018). Stable overexpression of p130/E2F4 affects the multipotential abilities of bone-marrow-derived mesenchymal stem cells. J. Cell. Physiol. 233, 9739-9749.   DOI
56 Poudineh, M., Wang, Z., Labib, M., Ahmadi, M., Zhang, L., Das, J., Ahmed, S., Angers, S., and Kelley, S.O. (2018). Three-dimensional nanostructured architectures enable efficient neural differentiation of mesenchymal stem cells via mechanotransduction. Nano Lett. 18, 7188-7193.   DOI
57 Neelapu, S.S., Locke, F.L., Bartlett, N.L., Lekakis, L.J., Miklos, D.B., Jacobson, C.A., Braunschweig, I., Oluwole, O.O., Siddiqi, T., Lin, Y., et al. (2017). Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N. Engl. J. Med. 377, 2531-2544.   DOI
58 Park, J.S., Chang, D.Y., Kim, J.H., Jung, J.H., Park, J., Kim, S.H., Lee, Y.D., Kim, S.S., and Suh-Kim, H. (2013). Retrovirus-mediated transduction of a cytosine deaminase gene preserves the stemness of mesenchymal stem cells. Exp. Mol. Med. 45, e10.   DOI
59 Park, J.S., Suryaprakash, S., Lao, Y.H., and Leong, K.W. (2015). Engineering mesenchymal stem cells for regenerative medicine and drug delivery. Methods 84, 3-16.   DOI
60 Preuss, E., Treschow, A., Newrzela, S., Brucher, D., Weber, K., Felldin, U., Alici, E., Gahrton, G., von Laer, D., Dilber, M.S., et al. (2010). TK.007: a novel, codon-optimized HSVtk(A168H) mutant for suicide gene therapy. Hum. Gene Ther. 21, 929-941.   DOI
61 Ramos, C.A., Asgari, Z., Liu, E., Yvon, E., Heslop, H.E., Rooney, C.M., Brenner, M.K., and Dotti, G. (2010). An inducible caspase 9 suicide gene to improve the safety of mesenchymal stromal cell therapies. Stem Cells 28, 1107-1115.   DOI
62 Ma, T., Gong, K., Ao, Q., Yan, Y., Song, B., Huang, H., Zhang, X., and Gong, Y. (2013). Intracerebral transplantation of adipose-derived mesenchymal stem cells alternatively activates microglia and ameliorates neuropathological deficits in Alzheimer's disease mice. Cell Transplant. 22 Suppl 1, S113-S126.
63 Rothenburger, T., Thomas, D., Schreiber, Y., Wratil, P.R., Pflantz, T., Knecht, K., Digianantonio, K., Temple, J., Schneider, C., Baldauf, H.M., et al. (2021). Differences between intrinsic and acquired nucleoside analogue resistance in acute myeloid leukaemia cells. J. Exp. Clin. Cancer Res. 40, 317.   DOI
64 Schuster, S.J., Bishop, M.R., Tam, C.S., Waller, E.K., Borchmann, P., McGuirk, J.P., Jager, U., Jaglowski, S., Andreadis, C., Westin, J.R., et al. (2019). Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N. Engl. J. Med. 380, 45-56.   DOI
65 Cicalese, M.P., Ferrua, F., Castagnaro, L., Rolfe, K., De Boever, E., Reinhardt, R.R., Appleby, J., Roncarolo, M.G., and Aiuti, A. (2018). Gene therapy for adenosine deaminase deficiency: a comprehensive evaluation of shortand medium-term safety. Mol. Ther. 26, 917-931.   DOI
66 Hall, S.J., Sanford, M.A., Atkinson, G., and Chen, S.H. (1998). Induction of potent antitumor natural killer cell activity by herpes simplex virus-thymidine kinase and ganciclovir therapy in an orthotopic mouse model of prostate cancer. Cancer Res. 58, 3221-3225.
67 Kalos, M., Levine, B.L., Porter, D.L., Katz, S., Grupp, S.A., Bagg, A., and June, C.H. (2011). T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci. Transl. Med. 3, 95ra73.   DOI