• 제목/요약/키워드: in vivo cell-tracking

검색결과 16건 처리시간 0.029초

Near-infrared (NIR) 영상기법을 이용한 생체 내 수지상세포의 이동 (In vivo Dendritic Cell Migration Tracking Using Near-infrared (NIR) Imaging)

  • 이준호;정남철;이은계;임대석
    • KSBB Journal
    • /
    • 제27권5호
    • /
    • pp.295-300
    • /
    • 2012
  • Matured dendritic cells (DCs) begin migration with their release from the bone marrow (BM) into the blood and subsequent traffic into peripheral lymphoid and non-lymphoid tissues. Throughout this long movement, migrating DCs must apply specialized skills to reach their target destination. Non-invasive in vivo cell-tracking techniques are necessary to advance immune cell-based therapies. In this study, we used a DiD cell-tracking solution for in vivo dendritic cell tracking in naive mice. We tracked DiD (non-invasive fluorescence dye)-labeled mature dendritic cells using the Near Infrared (NIR) imaging system in normal mice. We examined the immunophenotype of DiD-labeled cells compared with non-labelled mature DCs, and obtained time-serial images of NIR-DC trafficking after mouse footpad injection. In conclusion, we confirmed that DiD-labeled DCs migrated into the popliteal lymph node 24 h after the footpad injection. Here, these data suggested that the cell tracking system with the stable fluorescence dye DiD was useful as a cell tracking tool to advance dendritic cell-based immunotherapy.

In Vivo Non Invasive Molecular Imaging for Immune Cell Tracking in Small Animals

  • Youn, Hyewon;Hong, Kee-Jong
    • IMMUNE NETWORK
    • /
    • 제12권6호
    • /
    • pp.223-229
    • /
    • 2012
  • Clinical and preclinical in vivo immune cell imaging approaches have been used to study immune cell proliferation, apoptosis and interaction at the microscopic (intra-vital imaging) and macroscopic (whole-body imaging) level by use of ex vivo or in vivo labeling method. A series of imaging techniques ranging from non-radiation based techniques such as optical imaging, MRI, and ultrasound to radiation based CT/nuclear imaging can be used for in vivo immune cell tracking. These imaging modalities highlight the intrinsic behavior of different immune cell populations in physiological context. Fluorescent, radioactive or paramagnetic probes can be used in direct labeling protocols to monitor the specific cell population. Reporter genes can also be used for genetic, indirect labeling protocols to track the fate of a given cell subpopulation in vivo. In this review, we summarized several methods dealing with dendritic cell, macrophage, and T lymphocyte specifically labeled for different macroscopic whole-body imaging techniques both for the study of their physiological function and in the context of immunotherapy to exploit imaging-derived information and immune-based treatments.

The Present Status of Cell Tracking Methods in Animal Models Using Magnetic Resonance Imaging Technology

  • Kim, Daehong;Hong, Kwan Soo;Song, Jihwan
    • Molecules and Cells
    • /
    • 제23권2호
    • /
    • pp.132-137
    • /
    • 2007
  • With the advance of stem cell transplantation research, in vivo cell tracking techniques have become increasingly important in recent years. Magnetic resonance imaging (MRI) may provide a unique tool for non-invasive tracking of transplanted cells. Since the initial findings on the stem cell migration by MRI several years ago, there have been numerous studies using various animal models, notably in heart or brain disease models. In order to develop more reliable and clinically applicable methodologies, multiple aspects should be taken into consideration. In this review, we will summarize the current status and future perspectives of in vivo cell tracking technologies using MRI. In particular, use of different MR contrast agents and their detection methods using MRI will be described in much detail. In addition, various cell labeling methods to increase the sensitivity of signals will be extensively discussed. We will also review several key experiments, in which MRI techniques were utilized to detect the presence and/or migration of transplanted stem cells in various animal models. Finally, we will discuss the current problems and future directions of cell tracking methods using MRI.

3.0 T MRI 환경에서 마이크로비드를 이용한 서브복셀 추적에 관한 수치해석적 연구 (Numerical Study on the Sub-Voxel Tracking Using Micro-Beads in a 3.0 T MRI)

  • 한병희;이수열
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권1호
    • /
    • pp.102-107
    • /
    • 2007
  • In molecular imaging studies via magnetic resonance imaging, in vivo cell tracking is an important issue for the observation of cell therapy or disease behavior. High resolution imaging and longitudinal study are necessary to track the cell movement. Since the field inhomogeneity extends over several voxels, we have performed the numerical analysis using the sub-voxel method dividing a voxel of MR image into several elements and the information about the field inhomogeneity distribution around the micro-beads. We imbedded ferrite-composite micro-beads with the size of $20-150{\mu}m$ in the subject substituted for cells to induce local field distortion. In the phantom imaging with the isotropic voxel size of $200{\mu}m^3$, we could confirm the feasibility of sub-voxel tracking in a 3.0 T MRI.

Cell Surface Antigen Display for Neuronal Differentiation-Specific Tracking

  • Kim, Sang Chul;Lee, Eun-Hye;Yu, Ji Hea;Kim, Sang-Mi;Nam, Bae-Geun;Chung, Hee Yong;Kim, Yeon-Soo;Cho, Sung-Rae;Park, Chang-Hwan
    • Biomolecules & Therapeutics
    • /
    • 제27권1호
    • /
    • pp.78-84
    • /
    • 2019
  • Cell therapeutic agents for treating degenerative brain diseases using neural stem cells are actively being developed. However, few systems have been developed to monitor in real time whether the transplanted neural stem cells are actually differentiated into neurons. Therefore, it is necessary to develop a technology capable of specifically monitoring neuronal differentiation in vivo. In this study, we established a system that expresses cell membrane-targeting red fluorescent protein under control of the Synapsin promoter in order to specifically monitor differentiation from neural stem cells into neurons. In order to overcome the weak expression level of the tissue-specific promoter system, the partial 5' UTR sequence of Creb was added for efficient expression of the cell surface-specific antigen. This system was able to track functional neuronal differentiation of neural stem cells transplanted in vivo, which will help improve stem cell therapies.

Efficient In Vitro Labeling Rabbit Bone Marrow-Derived Mesenchymal Stem Cells with SPIO and Differentiating into Neural-Like Cells

  • Zhang, Ruiping;Li, Jing;Li, Jianding;Xie, Jun
    • Molecules and Cells
    • /
    • 제37권9호
    • /
    • pp.650-655
    • /
    • 2014
  • Mesenchymal stem cells (MSCs) can differentiate into neural cells to treat nervous system diseases. Magnetic resonance is an ideal means for cell tracking through labeling cells with superparamagnetic iron oxide (SPIO). However, no studies have described the neural differentiation ability of SPIO-labeled MSCs, which is the foundation for cell therapy and cell tracking in vivo. Our results showed that bone marrow-derived mesenchymal stem cells (BM-MSCs) labeled in vitro with SPIO can be induced into neural-like cells without affecting the viability and labeling efficiency. The cellular uptake of SPIO was maintained after labeled BM-MSCs differentiated into neural-like cells, which were the basis for transplanted cells that can be dynamically and non-invasively tracked in vivo by MRI. Moreover, the SPIO-labeled induced neural-like cells showed neural cell morphology and expressed related markers such as NSE, MAP-2. Furthermore, whole-cell patch clamp recording demonstrated that these neural-like cells exhibited electrophysiological properties of neurons. More importantly, there was no significant difference in the cellular viability and $[Ca^{2+}]_i$ between the induced labeled and unlabeled neural-like cells. In this study, we show for the first time that SPIO-labeled MSCs retained their differentiation capacity and could differentiate into neural-like cells with high cell viability and a good cellular state in vitro.

Toxicity and Biomedical Imaging of Fluorescence-Conjugated Nanoparticles in Hematopoietic Progenitor Cells

  • Min, Gye-Sik;Kim, Dong-Ku
    • Reproductive and Developmental Biology
    • /
    • 제35권4호
    • /
    • pp.503-510
    • /
    • 2011
  • Cellular uptake of nanoparticles for stem cell labeling and tracking is a critical technique for biomedical therapeutic applications. However, current techniques suffer from low intracellular labeling efficiency and cytotoxic effects, which has led to great interest in the development of a new labeling strategy. Using silica-coated nanoparticles conjugated with rhodamine B isothiocyanate (RITC) (SR), we tested the cellular uptake efficiency, biocompatibility, proliferation or differentiation ability with murine bone marrow derived hematopoietic stem/progenitor cells. The bone marrow hematopoietic cells showed efficient uptake with SR with dose or time dependent manner and also provided a higher uptake on hematopoietic stem/progenitor cells. Biocompatibility tests revealed that the SR had no deleterious effects on cell cytotoxicity, proliferation, or multi-differentiation capacities in vitro and in vivo. SR nanoparticles are advantageous over traditional labeling techniques as they possess a high level of cellular internalization without limiting the biofunctionality of the cells. Therefore, SR provides a useful alternative for gene or drug delivery into hematopoietic stem/progenitor cells for basic research and clinical applications.

세포 및 생체조직에서 확산에 관한 이해 (Understanding Diffusion in Cells and Living Tissues)

  • 김중경
    • 한국가시화정보학회지
    • /
    • 제5권1호
    • /
    • pp.12-15
    • /
    • 2007
  • Macromolecule diffusion in cells and tissues is important for cell signaling, metabolism and locomotion. Biophysical methods, including non-invasive or minimally invasive in-vivo photobleaching techniques and single quantum-dot tracking, have been used to measure the rates of macromolecule diffusion in living cells and tissues, including central nervous system and tumors. Mathematical modeling and statistical analysis of experimental data revealed various modes of diffusion, which are strongly coupled with spatiotemporal changes in nanoscale structures and material properties.

Tracking of Stem Cells from Human Exfoliated Deciduous Teeth Labeled with Molday ION Rhodamine-B during Periodontal Bone Regeneration in Rats

  • Nan Zhang;Li Xu;Hao Song;Chunqing Bu;Jie Kang;Chuanchen Zhang;Xiaofei Yang;Fabin Han
    • International Journal of Stem Cells
    • /
    • 제16권1호
    • /
    • pp.93-107
    • /
    • 2023
  • Background and Objectives: Chronic periodontitis can lead to alveolar bone resorption and eventually tooth loss. Stem cells from exfoliated deciduous teeth (SHED) are appropriate bone regeneration seed cells. To track the survival, migration, and differentiation of the transplanted SHED, we used super paramagnetic iron oxide particles (SPIO) Molday ION Rhodamine-B (MIRB) to label and monitor the transplanted cells while repairing periodontal bone defects. Methods and Results: We determined an appropriate dose of MIRB for labeling SHED by examining the growth and osteogenic differentiation of labeled SHED. Finally, SHED was labeled with 25 ㎍ Fe/ml MIRB before being transplanted into rats. Magnetic resonance imaging was used to track SHED survival and migration in vivo due to a low-intensity signal artifact caused by MIRB. HE and immunohistochemical analyses revealed that both MIRB-labeled and unlabeled SHED could promote periodontal bone regeneration. The colocalization of hNUC and MIRB demonstrated that SHED transplanted into rats could survive in vivo. Furthermore, some MIRB-positive cells expressed the osteoblast and osteocyte markers OCN and DMP1, respectively. Enzyme-linked immunosorbent assay revealed that SHED could secrete protein factors, such as IGF-1, OCN, ALP, IL-4, VEGF, and bFGF, which promote bone regeneration. Immunofluorescence staining revealed that the transplanted SHED was surrounded by a large number of host-derived Runx2- and Col II-positive cells that played important roles in the bone healing process. Conclusions: SHED could promote periodontal bone regeneration in rats, and the survival of SHED could be tracked in vivo by labeling them with MIRB. SHED are likely to promote bone healing through both direct differentiation and paracrine mechanisms.

In vivo Tracking of Transplanted Bone Marrow-Derived Mesenchymal Stem Cells in a Murine Model of Stroke by Bioluminescence Imaging

  • Jang, Kyung-Sool;Lee, Kwan-Sung;Yang, Seung-Ho;Jeun, Sin-Soo
    • Journal of Korean Neurosurgical Society
    • /
    • 제48권5호
    • /
    • pp.391-398
    • /
    • 2010
  • Objective : This study was designed to validate the cell trafficking efficiency of the in vivo bioluminescence image (BLI) study in the setting of transplantation of the luciferase expressing bone marrow-derived mesenchymal stem cells (BMSC), which were delivered at each different time after transient middle cerebral artery occlusion (MCAO) in a mouse model. Methods : Transplanting donor BMSC were prepared by primary cell culture from transgenic mouse expressing luciferase (LUC). Transient focal infarcts were induced in 4-6-week-old male nude mice. The experiment mice were divided into five groups by the time of MSC transplantation : 1) sham-operation group, 2) 2-h group, 3) 1-day group, 4) 3-day group, and 5) 1-week group. BLI for detection of spatial distribution of transplanted MSC was performed by detecting emitted photons. Migration of the transplanted cells to the infarcted area was confirmed by histological examinations. Differences between groups were evaluated by paired t-test. Results : A focal spot of bioluminescence was observed at the injection site on the next day after transplantation by Signal intensity of bioluminescence. After 4 weeks, the mean signal intensities of 2-h, 1-day, 3-day, and 1-week group were $2.6{\times}10^7{\pm}7.4{\times}10^6$. $6.1{\times}10^6{\pm}1.2{\times}10^6$, $1.7{\times}10^6{\pm}4.4{\times}10^5$, and $8.9{\times}10^6{\pm}9.5{\times}10^5$, respectively. The 2-h group showed significantly higher signal intensity (p<0.01). The engrafted BMSC showed around the infarct border zones on immunohistochemical examination. The counts of LUC-positive cells revealed the highest number in the 2-h group, in agreement with the results of BLI experiments (p<0.01). Conclusion : In this study, the results suggested that the transplanted BMSC migrated to the infarct border zone in BLI study and the higher signal intensity of LUC-positive cells seen in 2 hrs after MSC transplantation in MCAO mouse model. In addition, noninvasive imaging in real time is an ideal method for tracking stem cell transplantation. This method can be widely applied to various research fields of cell transplantation therapy.