Browse > Article

The Present Status of Cell Tracking Methods in Animal Models Using Magnetic Resonance Imaging Technology  

Kim, Daehong (Radiation Medicine Branch, National Cancer Center)
Hong, Kwan Soo (MRI Team, Korea Basic Science Institute)
Song, Jihwan (CHA Stem Cell Institute, Pochon CHA University College of Medicine)
Abstract
With the advance of stem cell transplantation research, in vivo cell tracking techniques have become increasingly important in recent years. Magnetic resonance imaging (MRI) may provide a unique tool for non-invasive tracking of transplanted cells. Since the initial findings on the stem cell migration by MRI several years ago, there have been numerous studies using various animal models, notably in heart or brain disease models. In order to develop more reliable and clinically applicable methodologies, multiple aspects should be taken into consideration. In this review, we will summarize the current status and future perspectives of in vivo cell tracking technologies using MRI. In particular, use of different MR contrast agents and their detection methods using MRI will be described in much detail. In addition, various cell labeling methods to increase the sensitivity of signals will be extensively discussed. We will also review several key experiments, in which MRI techniques were utilized to detect the presence and/or migration of transplanted stem cells in various animal models. Finally, we will discuss the current problems and future directions of cell tracking methods using MRI.
Keywords
Cell Tracking; Magnetic Resonance Imaging; Stem Cell Therapy;
Citations & Related Records

Times Cited By Web Of Science : 20  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Arbab, A. S., Yocum, G. T., Rad, A. M., Khakoo, A. Y., Fellowes, V., et al. (2005) Labeling of cells with ferumoxidesprotamine sulfate complexes does not inhibit function or differentiation capacity of hematopoietic or mesenchymal stem cells. NMR Biomed. 18, 553−559
2 Bulte, J. W., Douglas, T., Witwer, B., Zhang, S. C., Strable, E., et al. (2001) Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat. Biotechnol. 19, 1141−1147
3 Bulte, J. W., Zhang, S., van. Gelderen, P., Herynek, V., Jordan, E. K., et al. (1999) Neurotransplantation of magnetically labeled oligodendrocyte progenitors: magnetic resonance tracking of cell migration and myelination. Proc. Natl. Acad. Sci. USA 96, 15256−15261
4 Clement, O., Siauve, N., Cuenod, C. A., and Frija, G. (1998) Liver imaging with ferumoxides (Feridex): fundamentals, controversies, and practical aspects. Top. Magn. Reson. Imaging 9, 167−182
5 Cohen, B., Ziv, K., Plaks, V., Israely, T., Kalchenko, V., et al. (2007) MRI detection of transcriptional regulation of gene expression in transgenic mice. Nat. Med. 13, 498−503
6 de Vries, I. J., Lesterhuis, W. J., Barentsz, J. O., Verdijk, P., van Krieken, J. H., et al. (2005) Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat. Biotechnol. 23, 1407−1413
7 Frank, J. A., Anderson, S. A., Kalsih, H., Jordan, E. K., Lewis, B. K., et al. (2004) Methods for magnetically labeling stem and other cells for detection by in vivo magnetic resonance imaging. Cytotherapy 6, 621−625
8 Kraitchman, D. L., Heldman, A. W., Atalar, E., Amado, L. C., Martin, B. J., et al. (2003) In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation 107, 2290−2293
9 Meldrum, F. C., Heywood, B. R., and Mann, S. (1992) Magnetoferritin: in vitro synthesis of a novel magnetic protein. Science 257, 522−523
10 Modo, M., Hoehn, M., and Bulte, J. W. (2005) Cellular MR imaging. Mol. Imaging 4, 143−164
11 Muller, F. J., Snyder, E. Y., and Loring, J. F. (2006) Gene therapy: can neural stem cell deliver? Nat. Rev. Neurosci. 7, 75−84
12 Na, H. B., Lee, J. H., An, K., Park, Y. I., Park, M., et al. (2007) Development of a T(1) contrast agent for magnetic resonance iImaging using MnO nanoparticles. Angew. Chem. Int. Ed. Engl. Mar 13; Epub ahead of print
13 Rogers, W. J., Meyer, H., and Kramer, C. M. (2006) Technology insight: in vivo cell tracking by use of MRI. Nat. Clin. Prac. 3, 554−562
14 Ruehm, S. G., Corot, C., Vogt, P., Kolb, S., and Debatin, J. F. (2001) Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation 103, 415−422
15 Stark, D. D., Weissleder, R., Elizondo, G., Hahn, P. F., Saini, S., et al. (1988) Superparamagnetic iron oxide: clinical application as a contrast agent for MR imaging of the liver. Radiology 168, 297−301
16 Farzaneh, F., Riederer, S. J., and Pelc, N. J. (1990) Analysis of T2 limitations and off-resonance effects on spatial resolution and artifacts in echo-planar imaging. Magn. Reson. Med. 14, 123−139
17 Lauffer, R. B. (1987) Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: theory and design. Chem. Rev. 87, 901−907
18 Reimer, P., Marx, C., Rummeny, E. J., Muller, M., Lentschig, M., et al. (1997) SPIO-enhanced 2D-TOF MR angiography of the portal venous system: results of an intraindividual comparison. J. Magn. Reson. Imaging 7, 945−949
19 Shapiro, E. M., Sharer, K., Skrtic, S., and Koretsky, A. P. (2006) In vivo detection of single cells by MRI. Magn. Reson. Med. 55, 242−249
20 Song, H., Kwon, K., Lim, S., Kang, S. M., Ko, Y. G., et al. (2005) Transfection of mesenchymal stem cells with the FGF-2 gene improves their survival under hypoxic conditions. Mol. Cells 19, 402−407
21 Mani, V., Briley-Saebo, K. C., Itskovich, V. V., Samber, D. D., and Fayad, Z. A. (2006) Gradient echo acquisition for superparamagnetic particles with positive contrast (GRASP): sequence characterization in membrane and glass superparamagnetic iron oxide phantoms at 1.5T and 3T. Magn. Reson. Med. 55, 126−135
22 Mori, S. and Zhang, J. (2006) Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 51, 527−539
23 Hauger, O., Delalande, C., Trillaud, H., Deminiere, C., Quesson, B., et al. (1999) MR imaging of intrarenal macrophage infiltration in an experimental model of nephrotic syndrome. Magn. Reson. Med. 41, 156−162
24 Shapiro, E. M., Skrtic, S., Sharer, K., Hill, J. M., Dunbar, C. E., et al. (2004) MRI detection of single particles for cellular imaging. Proc. Natl. Acad. Sci. USA 101, 10901−10906
25 Turner, R., Howseman, A., Rees, G. E., Josephs, O., and Friston, K. (1998) Functional magnetic resonance imaging of the human brain: data acquisition and analysis. Exp. Brain. Res. 123, 5−12
26 Daldrup-Link, H. E., Rudelius, M., Oostendorp, R. A., Jacobs, V. R., Simon, G. H., et al. (2005a) Comparison of iron oxide labeling properties of hematopoietic progenitor cells from umbilical cord blood and from peripheral blood for subsequent in vivo tracking in a xenotransplant mouse model XXX. Acad. Radiol. 12, 502−510
27 Taupitz, M., Wagner, S., Schnorr, J., Kravec, I., Pilgrimm, H., et al. (2004) Phase I clinical evaluation of citrate-coated monocrystalline very small superparamagnetic iron oxide particles as a new contrast medium for magnetic resonance imaging. Invest. Radiol. 39, 394−405
28 Bandettini, P. A., Jesmanowicz, A., Wong, E. C., and Hyde, J. S. (1993) Processing strategies for time-course data sets in functional MRI of the human brain. Magn. Reson. Med. 30, 161−173
29 Rausch, M., Baumann, D., Neubacher, U., and Rudin, M. (2002) In-vivo visualization of phagocytotic cells in rat brains after transient ischemia by USPIO. NMR Biomed. 15, 278−283
30 Helm, L., Toth, E., and Merbach, A. E. (2003) Lanthanide ions as magnetic resonance imaging agents. Nuclear and electronic relaxation properties. Applications. Met. Ions. Biol. Syst. 40, 589−641
31 Mukherjee, P. and McKinstry, R. C. (2006) Diffusion tensor imaging and tractography of human brain development. Neuroimaging. Clin. N. Am. 16,19−43
32 Foster-Gareau, P., Heyn, C., Alejski, A., and Rutt, B. K. (2003) Imaging single mammalian cells with a 1.5 T clinical MRI scanner. Magn. Reson. Med. 49, 968−971
33 Metz, S., Bonaterra, G., Rudelius, M., Settles, M., Rummeny, E. J., et al. (2004) Capacity of human monocytes to phagocytose approved iron oxide MR contrast agents in vitro. Eur. Radiol. 14, 1851−1858
34 Anderson, S. A., Shukaliak-Quandt, J., Jordan, E. K., Arbab, A. S., Martin, R., et al. (2004) Magnetic resonance imaging of labeled T cells in a mouse model of multiple sclerosis. Ann. Neurol. 55, 654−659
35 Frank, J. A., Miller, B. R., Arbab, A. S., Zywicke, H. A., Jordan, E. K., et al. (2003) Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology 228, 480−487
36 Josephson, L., Tung, C. H., Moore, A., and Weissleder, R. (1999) High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconjug. Chem. 10,186−191
37 Matuszewski, L., Persigehl, T., Wall, A., Schwindt, W., Tombach, B., et al. (2005) Cell tagging with clinically approved iron oxides: feasibility and effect of lipofection, particle size, and surface coating on labeling efficiency. Radiology 235, 155−161
38 Daldrup-Link, H. E., Rudelius, M., Piontek, G., Metz, S., Brauer, R., et al. (2005b) Migration of iron oxide-labeled human hematopoietic progenitor cells in a mouse model: in vivo monitoring with 1.5-T MR imaging equipment. Radiology 234, 197−205
39 Cunningham, C. H., Arai, T., Yang, P. C., McConnell, M. V., Pauly, J. M., et al. (2005) Positive contrast magnetic resonance imaging of cells labeled with magnetic nanoparticles. Magn. Reson. Med. 53, 999−1005
40 Weissleder, R. (1994) Liver MR imaging with iron oxides: toward consensus and clinical practice. Radiology 193, 593−595
41 Mansfield, P. (1977) Multi-planar image formation using NMR spin echos. J. Physics C10, L55–L58
42 McLachlan, S. J., Morris, M. R., Lucas, M. A., Fisco, R. A., Eakins, M. N., et al. (1994) Phase I clinical evaluation of a new iron oxide MR contrast agent. J. Magn. Reson. Imaging 4, 301−307
43 Zitvogel, L. and Tursz, T. (2005) In vivo veritas. Nat. Biotechnol. 23, 1372−1374   DOI   ScienceOn
44 Bulte, J. W. and Kraitchman, D. L. (2004) Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed. 17, 484−499
45 Heyn, C., Bowen, C. V., Rutt, B. K., and Foster, P. J. (2005) Detection threshold of single SPIO-labeled cells with FIESTA. Magn. Reson. Med. 53, 312−320
46 Lauterbur, P. C., Mendonca, Dias. M. H., and Rudin, A. M. (1978) Augmentation of tissue water proton spin-lattice relaxation rates by in vivo addition of paramagnetic ions; in Frontiers of Biological Energetics, Dutton, P., Leigh, J. S., and Scarpa, A. (eds.), pp. 752−759, Academic Press, New York
47 Harisinghani, M. G., Barentsz, J., Hahn, P. F., Deserno, W. M., Tabatabaei, S., et al. (2003) Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N. Engl. J. Med. 348, 2491−2499
48 Blaimer, M., Breuer, F., Mueller, M., Heidemann, R. M., Griswold, M. A., et al. (2004) SMASH, SENSE, PILS, GRAPPA: how to choose the optimal method. Top. Magn. Reson. Imaging 5, 223−236
49 Bruder, H., Fischer, H., Reinfelder, H. E., and Schmitt, F. (1992) Image reconstruction for echo planar imaging with nonequidistant k-space sampling. Magn. Reson. Med. 23, 311−323
50 Gillies, R. J. (2002) In vivo molecular imaging. J. Cell. Biochem. Suppl. 39, 231−238
51 Lauterbur, P. C. (1973) Image formation by induced local interactions. Examples employing nuclear magnetic resonance. Nature 242, 190−191   DOI   ScienceOn
52 Aime, S., Dastru, W., Crich, S. G., Gianolio, E., and Mainero, V. (2002) Innovative magnetic resonance imaging diagnostic agents based on paramagnetic Gd (III) complexes. Biopolymers 66, 419−428
53 Baik, M., Henninghausen, L., and Choi, Y. (1997) In situ localization of WDNM1 and ferritin heavy chain gene expression in mammary gland. Mol. Cells 7, 448−450
54 Hoehn, M., Kustermann, E., Blunk, J., Wiedermann, D., Trapp, T., et al. (2002) Monitoring of implanted stem cell migration in vivo: a highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat. Proc. Natl. Acad. Sci. USA 99, 16267−16272