• Title/Summary/Keyword: in vitro selection

Search Result 280, Processing Time 0.025 seconds

Optimization of Experimental Conditions for In vitro P-glycoprotein Assay Using LLC-GA5 Cells

  • Ahn, A-Ra;Oh, Ju-Hee;Lee, Joo-Hyun;Lee, Young-Joo
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.6
    • /
    • pp.363-366
    • /
    • 2010
  • Identification of compounds that function as P-glycoprotein (P-gp) substrates or inhibitors can facilitate the selection and optimization of new drug candidates. The purpose of this study is to optimize the experimental conditions for in vitro P-gp assay using LLC-GA5 cells, which is a well-known transformant cell line derived by transfecting LLC-PK1 with human MDR1. The amount of rhodamine123 transported by the LLC-GA5 and LLC-PK1 cells was evaluated under the following experimental conditions: 3 different types of transport media, colchicine pretreatment or nontreatment of the cells in the culture media, and with and without poly-L-lysine coating of the culture plates. The assay sensitivity was found to considerably differ depending on the diluents used in the transport media. P-gp-mediated transport in LLC-GA5 cells was most clearly characterized in the Hanks' balanced salt solution based transport media. The sensitivity of P-gp-mediated transport was not changed by colchicine pretreatment or poly-L-lysine coating of the culture plates.

In Vivo Expression Technology (IVET) and Its Application in Plant-Associated Bacteria

  • Lee, Seon-Woo
    • The Plant Pathology Journal
    • /
    • v.18 no.2
    • /
    • pp.57-62
    • /
    • 2002
  • In vivo expression technology (IVET) has been developed to study bacterial gene expression in Salmonella typhimurium during host infection. The expression of selected genes by IVET has been elevated in vivo but not in vitro. The selected genes turned out to be important for bacterial virulence and/or pathogenicity. IVET depends on a synthetic operon with a promoterless transcriptional fusion between a selection marker gene and a reporter gene. The IVET approach has been successfully adapted in other bacterial pathogens and plant-associated bacteria using different selection markers. Pseudomonas putida suppresses citrus root rot caused by Phytophthora parasitica and enhances citrus seedling growth. The WET strategy was adapted based on a transcriptional fusion, pyrBC'-lacZ, in P. putida to study the bacterial traits important far biocontrol activities. Several genes appeared to be induced on P. parasitica hyphae and were found to be related with metabolism and regulation of gene expression. It is likely that the biocontrol strain took a metabolic advantage from the plant pathogenic fungus and then suppressed citrus root rot effectively. The result was parallel with those from the adaptation of IVET in P. fluorescens, a plant growth promoting rhizobacteria (PGPR). Interestingly, genes encoding components for type III secretion system have been identified as rhizosphere-induced genes in the PGPR strain. The type III secretion system may play a certain role during interaction with its counterpart plants. Application of IVET has been demonstrated in a wide range of bacteria. It is an important strategy to genetically understand complicated bacterial traits in the environment.

In vitro shoot regeneration and genetic transformation of the gerbera (Gerbera hybrida Hort.) cultivar 'Gold Eye'

  • Chung, Mi-Young;Kim, Min Bae;Chung, Yong Mo;Nou, Ill-Sup;Kim, Chang Kil
    • Journal of Plant Biotechnology
    • /
    • v.43 no.2
    • /
    • pp.255-260
    • /
    • 2016
  • This research was conducted to improve the cold tolerance of the gerbera cv. Gold Eye by introduction of the Arabidopsis $Ca^{2+}/H^+$ antiporter gene (CAX1) via Agrobacterium-mediated transformation. Prior to genetic transformation, we optimized a combination of plant growth regulators; $1.0mgl^{-1}$ 6-Benzyladenine (BA) and $0.1mgl^{-1}$3-indole-acetic acid (IAA) were found to lead to proper in vitro shoot regeneration from petiole explants. In addition, $50mgl^{-1}$ kanamycin was determined to be the minimal concentration useful for selection of putative transgenic plants. In this study, transgenic gerbera expressing the Arabidopsis $Ca^{2+}/H^+$ antiporter gene (CAX1) were obtained using the optimized concentrations. We expect that introduction of the gene to the cultivar will improve cold tolerance, which will be important in the winter months.

In Vivo Screening for Biocontrol Agents (BCAs) against Streptomyces scabiei Causing Potato Common Scab

  • Lee, Hyang-Burm;Cho, Jong-Wun;Park, Dong-Jin;Li, Chang-Tian;Ko, Young-Hwan;Song, Jeong-Heub;Koh, Jeong-Sam;Kim, Bum-Joon;Kim, Chang-Jin
    • The Plant Pathology Journal
    • /
    • v.20 no.2
    • /
    • pp.110-114
    • /
    • 2004
  • Through in vitro screening for biocontrol agents (BCAs) against Streptomyces scabiei causing potato (Solanum tuberosum) common scab, 19 streptomycete and 17 fungal isolates with antagonistic activity were selected as BCA candidates. For the selection of BCA candidates which are highly resistant to 10 kinds of antibiotics or pesticides, chemical susceptibility testing was initially performed in vitro. A remarkable degree of variation in susceptibility to antibiotics or pesticides was observed among the isolates tested. Streptomycete A020645 isolate was highly resistant to all the tested chemicals except neomycin up to 5,000 ppm. On the other hand, out of 36 antagonistic microbes subjected to in vivo pot tests using cultivar Daejima, four streptomycete isolates namely, A020645, A010321, A010564, and A020973, showed high antagonistic activity with >60% and 55% control value, respectively, and high chemical resistance to 10 kinds of chemicals. Therefore, these isolates were selected as potential BCAs for the control of potato common scab.

In Vitro Selection of MRSA Strains Resistant to Some New Fluoroquinolone Antibiotics and Characterization of their Resistance Mechanisms (새로운 플루오로 퀴놀론계 항균제에 대한 내성 MRSA 균주의 In Vitro 선발과 그 내성 기전 분석)

  • Yoon, Eun-Jeong;Kim, Hyun-Jee;Lee, Chun-Yeong;Choi, Eung-Chil;Shim, Mi-Ja
    • YAKHAK HOEJI
    • /
    • v.52 no.3
    • /
    • pp.219-224
    • /
    • 2008
  • Clinically isolated methicillin-resistant Staphylococcus aureus strains were exposed to subinhibitory concentration of DW286, DW-224a, gemifloxacin, trovafloxacin, sparfloxacin and ciprofloxacin during 26- to 39-days period. Subculturing led to resistance development, and most of the selected mutants were above susceptible breakpoints. Selected mutants had broad cross resistance to other quinolone antibiotics and only one mutant was completely susceptible to all fluoroquinolones. Twenty five among 42 mutants revealed mutations on DNA gyrase and topoisomerase IV by sequencing. Also 16 mutants had fluoroquinolones MICs that were 4-32 times lower in the presence of reserpine. In conclusion, alterations in DNA gyrase or topoisomerase IV and action of efflux pumping out system are the resistance mechanisms of DW-224a.

Optimization of Regeneration Condition Under Agrobacterium-mediated Transformation in in vitro Cultured Korean Soybean

  • Kantayos, Vipada;Bae, Chang-Hyu
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.36-36
    • /
    • 2018
  • Soybean is the important crop in Asian countries as protein source, oil production and animal feed. Improving soybean using genetic transformation is the principal tool in nowadays. Developing herbicide resistant transgenic soybean plants through Agrobacterium-mediated transformation has been worked in many previous studied. However, the transformation efficiency is still low. Many attempts try to find the optimum media condition for plant regeneration after infection. After transformation, the plant regeneration is very important condition to promote growth of transgenic plant. In this study, we optimized a regeneration condition for two Korean soybean cultivar, Dawonkong and Pungsannamulkong using cotyledon, cotyledonary nodes and hypocotyl as explant. The results showed that shoot regeneration of cotyledonary nodes on B5 medium containing 2 mg/L 6-benzylaminopurine showed the highest percentage of regeneration in Dawonkong (75.8%) while Pungsannamulkong presented high number of shoots 2.12 shoots per explant. For transformation condition, co-cultivation in 7 days showed a high number of GUS positive expression. Most of explants can survived under media including 5 mg/L of glufocinate which refers phosphinotricin for 2-week selection. Washing with 400 mg/L of cefotaxime in several times and selection in plant regeneration media with 400 mg/L of cefotaxime can prevent bacteria growth, effectively.

  • PDF

Selection of Plant Growth-Promoting Pseudomonas spp. That Enhanced Productivity of Soybean-Wheat Cropping System in Central India

  • Sharma, Sushil K.;Johri, Bhavdish Narayan;Ramesh, Aketi;Joshi, Om Prakash;Sai Prasad, S.V.
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.11
    • /
    • pp.1127-1142
    • /
    • 2011
  • The aim of this investigation was to select effective Pseudomonas sp. strains that can enhance the productivity of soybean-wheat cropping systems in Vertisols of Central India. Out of 13 strains of Pseudomonas species tested in vitro, only five strains displayed plant growth-promoting (PGP) properties. All the strains significantly increased soil enzyme activities, except acid phosphatase, total system productivity, and nutrient uptake in field evaluation; soil nutrient status was not significantly influenced. Available data indicated that six strains were better than the others. Principal component analysis (PCA) coupled cluster analysis of yield and nutrient data separated these strains into five distinct clusters with only two effective strains, GRP3 and HHRE81 in cluster IV. In spite of single cluster formation by strains GRP3 and HHRE81, they were diverse owing to greater intracluster distance (4.42) between each other. These results suggest that the GRP3 and HHRE81 strains may be used to increase the productivity efficiency of soybean-wheat cropping systems in Vertisols of Central India. Moreover, the PCA coupled cluster analysis tool may help in the selection of other such strains.

In Vitro Selection and Characterizations of Gamma Radiation-Induced Salt Tolerant Lines in Rice (방사선을 이용한 내염성 계통의 기내선발 및 특징)

  • Lee, In-Sok;Kim, Dong-Sub;Hyun, Do-Yoon;Lim, Yong-Pyo;Lee, Young-Il
    • Journal of Plant Biotechnology
    • /
    • v.29 no.4
    • /
    • pp.247-252
    • /
    • 2002
  • The combination of radiation technique with an in vitro culture system was initiated to develop salt tolerant rice. We established an in vitro culture system to select tolerant lines against salt stress. NaCl tolerant cell lines were selected from the callus irradiated with gamma ray on N$_{6}$ medium with 1.5% NaCl and 2 mg/L 2,4-D. Regenerants (M$_1$) were obtained from the tolerant callus which was cultured for 30 days auxin-free medium. The M$_2$seeds were harvested from M$_1$plants on an individual plant basis. Thirty seedlings from each 450 M$_2$lines were transplanted in a field and total 5,000 M$_3$lines were harvested with an average 90 percent of fertile grain. M$_3$lines were utilized for selection of salt tolerance. Salinity-tolerant lines (225) were selected among 5,000 M$_3$lines. Of the 225 lines tested, the morphological traits of two lines (120-10 and -11) were far superior to control (Donagjinbyeo) in agromomic traits such as plant height, root length and no. of roots. Control and tolerant lines were analyzed by RAPD markers. Three polymorphic bands were presented in only tolerant lines, demonstrating a genetic difference between control and the tolerant lines. Such tolerant lines could be used as genetic resources to improve salt tolerance.e.

Expression of Porcine Epidemic Diarrhea Virus Spike Gene in Transgenic Carrot Plants

  • Kim, Young-Sook;Kwon, Tae-Ho;Yang, Moon-Sik
    • Plant Resources
    • /
    • v.6 no.2
    • /
    • pp.108-113
    • /
    • 2003
  • This study was carried out to obtain basic information for possibility of oral vaccine in carrot using Agrobacteruim -mediated transformation system. The epitope region of porcine epidemic diarrhea virus (PEDV) spike gene which is classified as a member of the Coronaviridae and causes an acute enteritis in pigs was successfully expressed in carrot (Daucus carota) using the Agrobacterium-mediated transformation system. Hypocotyl segments of in vitro germinated plantlets were infected with Agrobacteriun tumefaciens LBA 4404 harboring PEDV spike gene. Embryogenic callus (EC) was induced on MS selection medium with 1 mg/L 2,4-D, 50 mg/L kanamycin and 300 mg/L cefotaxime after 45 days of culture. Subcultured ECs on MS selection medium without 2,4-D were converted to somatic embryos (SE) of various stage; globular, heart and torpedo stage. Putative transgenic embryos were selected on MS medium with 50 mg/L kanamycin and 300 mg/L cefotaxime. Regenerated plantlets from transformed SE were induced on MS medium containing 50 mg/L kanamycin after 30 days of culture. Genomic PCR confirmed the integration of PEDV spike gene into nuclear genome of carrot and northern blot analysis demonstrated the expression of PEDV spike gene in transgenic carrot.

  • PDF

Subcutaneous progesterone versus vaginal progesterone for luteal phase support in in vitro fertilization: A retrospective analysis from daily clinical practice

  • Schutt, Marcel;Nguyen, The Duy;Kalff-Suske, Martha;Wagner, Uwe;Macharey, Georg;Ziller, Volker
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.48 no.3
    • /
    • pp.262-267
    • /
    • 2021
  • Objective: Progesterone application for luteal phase support is a well-established concept in in vitro fertilization (IVF) treatment. Water-soluble subcutaneous progesterone injections have shown pregnancy rates equivalent to those observed in patients receiving vaginal administration in randomized controlled trials. Our study aimed to investigate whether the results from those pivotal trials could be reproduced in daily clinical practice in an unselected patient population. Methods: In this retrospective cohort study in non-standardized daily clinical practice, we compared 273 IVF cycles from 195 women undergoing IVF at our center for luteal phase support with vaginal administration of 200 mg of micronized progesterone three times daily or subcutaneous injection of 25 mg of progesterone per day. Results: Various patient characteristics including age, weight, height, number of oocytes, and body mass index were similar between both groups. We observed no significant differences in the clinical pregnancy rate (CPR) per treatment cycle between the subcutaneous (39.9%) and vaginal group (36.5%) (p=0.630). Covariate analysis showed significant correlations of the number of transferred embryos and the total dosage of stimulation medication with the CPR. However, after adjustment of the CPR for these covariates using a regression model, no significant difference was observed between the two groups (odds ratio, 0.956; 95% confidence interval, 0.512-1.786; p=0.888). Conclusion: In agreement with randomized controlled trials in study populations with strict selection criteria, our study determined that subcutaneous progesterone was equally effective as vaginally applied progesterone in daily clinical practice in an unselected patient population.